
Article
Discriminatory Power of C
ombinatorial Antigen
Recognition in Cancer T Cell Therapies
Graphical Abstract
tumor samples normal tissues
Highlights
d 2- and 3-antigen AND or NOT logic gates improve tumor

discrimination of CAR T cells

d All transmembrane antigen combination pairs and triples are

computationally screened

d Combinatorial antigens that outperform current clinical CAR

T cells are predicted

d Adding antigens improves precision at the cost of recall; 2–3

is optimal
Dannenfelser et al., 2020, Cell Systems 11, 215–228
September 23, 2020 ª 2020 Published by Elsevier Inc.
https://doi.org/10.1016/j.cels.2020.08.002
Authors

Ruth Dannenfelser, Gregory M. Allen,

Benjamin VanderSluis, ...,

Alicja Tadych, Olga G. Troyanskaya,

Wendell A. Lim

Correspondence
ogt@genomics.princeton.edu (O.G.T.),
wendell.lim@ucsf.edu (W.A.L.)

In Brief

The application of CAR T cells to solid
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identifying single target antigens that
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and normal tissue to avoid toxicity. We

leverage large-scale RNA-seq databases

from tumor and normal tissues to

evaluate the discriminatory power of

single antigens and antigen

combinations. Most single antigens,

including those currently under

investigation as CAR targets in solid

tumors, perform poorly. The addition of a

second or third antigen using AND or NOT

gating can significantly improve CAR T

cell performance. We construct and test a

pair of potential AND-gated T cells for

renal cell carcinoma. A full database of all

predicted high-performing antigen pairs

and triplets is made available in an

associated web server (antigen.

princeton.edu).
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SUMMARY
Precise discrimination of tumor from normal tissues remains a major roadblock for therapeutic efficacy of
chimeric antigen receptor (CAR) T cells. Here, we perform a comprehensive in silico screen to identify
multi-antigen signatures that improve tumor discrimination by CAR T cells engineered to integrate multiple
antigen inputs via Boolean logic, e.g., AND and NOT. We screen >2.5 million dual antigens and �60 million
triple antigens across 33 tumor types and 34 normal tissues. We find that dual antigens significantly outper-
form the best single clinically investigated CAR targets and confirm key predictions experimentally. Further,
we identify antigen triplets that are predicted to show close to ideal tumor-versus-normal tissue discrimina-
tion for several tumor types. This work demonstrates the potential of 2- to 3-antigen Boolean logic gates for
improving tumor discrimination by CAR T cell therapies. Our predictions are available on an interactive web
server resource (antigen.princeton.edu).
INTRODUCTION

Despite recent clinical success in using engineered T cells to

treat hematologic cancers (Maude et al., 2018; Neelapu et al.,

2017), a major barrier in expanding their use to solid tumors is

the challenge of specific tumor recognition. Although it is

possible to engineer chimeric antigen receptors (CARs) directed

toward tumor associated antigens, many of those antigens,

especially in the case of solid tumors, are also expressed, often

at lower levels, in other normal tissues, leading to cases of toxic

cross-reactivity (Lamers et al., 2013; Morgan et al., 2010; Par-

khurst et al., 2011; Thistlethwaite et al., 2017). While toxicity

can in some cases be ameliorated by reducing CAR T dosage,

the small therapeutic window caused by poor discrimination
Cell Systems 11, 21
leads to a trade-off between efficacy and toxicity. The difficulty

of finding absolutely tumor unique surface antigens that can be

distinctly recognized by CARs has led some to question the

capability of such engineered T cells to ultimately achieve suc-

cess in safely treating solid tumors (Rosenberg and Res-

tifo, 2015).

Current approaches for engineering CAR T cells, however,

focus only on recognition of a single target antigen. If we

consider that solid tumors express an array of antigens, it is

possible that improved specificity could be achieved through

recognition of combinatorial antigen signatures (Figure 1A).

Such considerations, however, have only recently become

actionable with advances in synthetic biology approaches to en-

gineering T cell therapies. Engineered cells are unique among
5–228, September 23, 2020 ª 2020 Published by Elsevier Inc. 215
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Figure 1. Computationally Enumerating Combinatorial Antigen Sets Predicted to Improve T Cell Discrimination of Cancer versus

Normal Cells

(A) Single antigen targets for CAR T cells often show cross reactivity with subset of normal tissues. Combinatorial recognition circuits (AND, NOT, etc.) could

improve discrimination.

(B) Single antigen targets theoretically hit samples that have high expression of antigen A or B. Using Boolean T cells we can target specific patterns of antigen

expression reducing off-target toxicity.

(C) Computational pipeline for identifying antigen pairs with improved tumor discrimination. For each cancer type (N = 33), normalized RNA-seq expression data

are combined with RNA-seq data for 34 normal tissues. All potential transmembrane antigen pairs are then evaluated for their potential to separate samples of a

given tumor type from all normal samples in expression space. Shaded boxes highlight specific steps of the pipeline starting with a representation of the

expression data, followed by the scoring method, and toy examples highlighting how evaluation metrics are calculated.
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Table 1. ‘‘Clinical’’ Antigens Currently under Investigation as

CAR Targets in Clinical Trials as Identified from Clinicaltrials.gov

Antigen Clinical Trial

AXL NCT03393936

CAIX-2 DDHK97-29

CD133 NCT02541370

CD137 NCT02862704

CD147 NCT04045847

CD70 NCT02830724

CD80 NCT03198052

CEA NCT01373047

CLDN18 NCT03159819

EGFR NCT02331693

EpCAM NCT02915445

EPHA2 NCT03423992

FAP NCT01722149

FOLR1 NCT00019136

GD2 NCT00085930

GPC3 NCT02959151

IL13RA2 NCT00730613

HER2 NCT02442297

L1CAM NCT02311621

MSLN NCT02930993

MET NCT01837602

MUC1 NCT02617134

MUC16 NCT02498912

PD-L1 NCT0330834

PSCA NCT02744287

PSMA NCT01929239

ROR1 NCT02706392

ROR2 NCT03393936

VEGFR2 NCT01218867
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therapeutic modalities in that they can in principle be engineered

with multi-antigen recognition circuits. For example, recent ad-

vances have shown that it is possible to engineer CAR T cells

that recognize target cells with combinatorial Boolean logic:

one can engineer T cells with multi-receptor circuits that function

as AND gates (requiring two antigens to be present) (Kloss et al.,

2013; Roybal et al., 2016a, 2016b; Srivastava et al., 2019; Wilkie

et al., 2012), NOT gates (Fedorov et al., 2013), and OR gates

(requiring the presence of one of two possible antigens) (Grada

et al., 2013; Hegde et al., 2013). AND gates (high expression of

two antigens) and NOT gates (high expression of one antigen,

low expression of another) could, in principle, significantly in-

crease tumor selectivity by limiting cross-reactivity with healthy

tissues that also express theCAR/TCR target antigen (Figure 1A).

It may also be possible to engineer T cells with more complex

recognition circuits, based on more than two antigens. A critical

question that remains is how significantly such combinatorial an-

tigen recognition circuits could improve targeting of cancers and

limit cross-reaction with normal tissues.

Here, we performed a comprehensive computational search

of all possible pairs of predicted surface antigens in the human
genome (2,358 total predicted surface geneswith >2.5million to-

tal possible surface-presented antigen combinations) to explore

the strategy of tumor cell targeting by CAR T cells engineered to

express multi-receptor circuits that function as Boolean logic

gates. We score all AND and NOT gates by how well the putative

combination separates tumor and normal tissue samples for 33

distinct tumor types and 34 major healthy tissues and then add a

third surface antigen to explore more than 60 million additional

unique AND and NOT gates for triplets. For these logic gates,

we define both howmuch off-target toxicity can be avoided (pre-

cision) and the potential number of tumor samples we can target

(recall).

We find that cellular recognition programs which incorporate

information from multiple (2 or 3) antigens, outperform standard

single antigen recognition circuits. As the number of antigens

used to discriminate tumor-versus-normal tissue is increased,

the precision of tumor detection increases at the cost of

decreased recall of all tumor specimens. For most cancer types,

there are numerous dual antigen combinations that significantly

improve the precision and recall of the best single antigen,

including currently clinically investigated CAR targets. For

several tumor types, antigen triplets are predicted to show close

to ideal tumor-versus-normal tissue discrimination. We also

experimentally validate improved detection of renal cell carci-

noma (RCC) using computationally identified antigen pairs for

proof of principle. In total, our work illustrates an overall strategy

for merging computational analysis with increasing synthetic

biology capabilities to identify and target sectors of antigen

recognition space that precisely identify and discriminate partic-

ular tumor types.

RESULTS

Pipeline for Identifying Antigen Combinations that
Improve Tumor Discrimination
Candidate antigens must be recognizable from the cell surface.

Toward that end we first curated a list of more than 5,000 genes

expected to have cell surface expression. Using the COMPART-

MENTS database (Binder et al., 2014), we further pruned our

curated list to only include predicted transmembrane proteins

that are annotated to be expressed on the plasma membrane.

Of these, the genes predicted to encode transmembrane pro-

teins, we classified potential target antigens as either: ‘‘clin-

ical’’—involved as a target of a CAR T cell therapy in a currently

registered clinical trial (29 genes; see Table 1); or ‘‘novel’’—not

currently targeted in a known therapeutic T cell clinical trial. In to-

tal, this yielded approximately 2,400 surface-expressed genes

across 33 tumor types and 34 normal tissue samples (Supple-

mental Information).

We then use RNA sequencing (RNA-seq) expression data

across 9,084 samples taken from the Cancer Genome Atlas

(TCGA) (https://www.cancer.gov/tcga) and 12,402 samples

from Genotype Tissue Expression project (GTEx) (GTEx Con-

sortium et al., 2017) to measure the level of potential target anti-

gen gene expression. To reduce expression differences due to

technical variation, we batch corrected all samples and used

log transformed TPM (transcript per million) normalized read

counts. Samples were partitioned using geometric sketching

(Hie et al., 2019) to get an equal representation of all tissue types
Cell Systems 11, 215–228, September 23, 2020 217
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and the tumor samples in both partitions, with 20% of the data

taken for training and the remaining 80% set aside for evaluation.

Using the gene expression values of potential target antigens,

we calculated a clustering-based score to quantify the separa-

tion between samples of a single tumor type versus all normal tis-

sue samples (Figure 1C). Specifically, we chose the Davies-

Bouldin metric, whichmeasures the ratio of within cluster spread

to between cluster distance, as the key component of our clus-

ter-based scores. Before settling on Davies-Bouldin we investi-

gated other cluster evaluation metrics that could be applied to

the cluster separation problem including: Silhouette, Dunn’s in-

dex, and the Xie-Bene validity measure. While all methods yield

to similar results, some drawbacks with other metrics made Da-

vies-Bouldin our preferred choice. Namely, that: Silhouette gives

too much weight to compactness and did not have enough vari-

ation to differentiate between top antigens; Dunn’s index did not

produce enough variation in scores; and Xie-Bene generated too

many missing values in practice.

Final clustering-based scores for a given antigen combination,

utilize the Davies-Bouldin index with a modification to give extra

weight for the distance between cluster centers. Together, clus-

tering scores take into account the average distance between

the two types of samples (tumor and normal) and the overall dis-

tribution of samples in expression space. Clustering-based

scores are scaled from 0 to 1, for ease of ordering, with scores

close to 1 indicating the best performing combinations with

larger distance and less scatter between the classes of samples

(see STAR Methods for additional details).

On the training set, we used clustering-based scores to rank

all putative target antigens for each tumor type by their potential

to separate samples of one tumor type from all normal tissue

samples (Figure 1C). We calculated clustering scores for all sur-

face antigens as a single (n = 2,358) and as a pair (n = 2,778,903)

for each tumor type. Only singles with high antigen expression in

the target cancer samples, and pairs of antigens (doubles) that

are either both highly expressed in the target (AND-gate), or

one with high expression and the other with low expression in

the target (AND-NOT-gate) are useful as viable CAR/TCR tar-

gets. Given the large number of surface antigens (2,358), the

space of potential triplets for our set of antigens is >2.2 billion

(2,358 choose 3), for efficiency we restricted the search of triple

antigen gates to single antigens that have at least some discrim-

ination potential as assessed in the single antigen search (see

STAR Methods). We then calculated clustering scores over this

restricted set per tumor type for triple AND, AND-AND-NOT,

and AND-NOT-NOT gates.

The clustering-based scores prioritize antigens that have a

large distance between tumor and normal samples, but we are

also interested in a metric that can more directly capture how

much off-target toxicity can be avoided (precision) and the po-

tential number of tumor samples we can target (recall) if Boolean

logic gates are used. Decision tree classifiers can find bound-

aries that divide data into groups, while optimizing for the purity

of the division. New samples can then be labeled with a group

depending on which side of the boundary they fall on. In our

case, decision trees can be used to find an expression value

for each antigen where samples of a given tumor type are the

most separated from normal tissue samples, then use the

boundary to classify a new sample point as tumor or normal.
218 Cell Systems 11, 215–228, September 23, 2020
Since clustering scores prioritize antigens that spread the two

sample types, we should be able to find clear boundaries. To

train the decision tree models we used the same training data

we used for the clustering-based scores and evaluate the result-

ing models on our held out test set of samples (Figure S1).

Applying this to the top antigen combinations found via clus-

tering, we can then assess how well each of the top performing

single, double, and triple gates separate tumor samples from

normal tissue samples using the resulting F1 score (harmonic

mean of precision and recall) from classification.

Recognition of All Cancer Types Can Be Improved by
Adding Secondary Antigens to Current Clinical CAR T
Targets
We first calculated clustering-based scores for the current clini-

cally targeted antigens described in (Table 1). We compared

these single antigen scores with those obtained for antigen pairs

in which two clinically targeted antigens (clinical antigens) are

combined, a clinical antigen is paired with a novel putative sur-

face antigen, or two novel surface antigens are paired. A spread-

sheet listing the top 10 antigen pairs from each type of combina-

tion (e.g., clinical-clinical, clinical-novel, etc.) per cancer type is

provided in the Supplemental Information, Table S1 and is

ranked by clustering-based scores.

To give us more insight into how well antigens combinations

separate normal versus tumor samples, we used decision tree

models for each single antigen and each antigen pair in the

top-ranked antigens, as identified by their clustering scores. De-

cision trees find expression level cutoffs for each antigen that

separate the classes of samples (tumor and normal). Applying

them on held out sample data yielded additional metrics

describing how well potential antigen combinations separate tu-

mor and normal samples when using distinct expression level

boundaries (Figure S1).

More specifically for each gate type, we took the top 10 anti-

gen singles or pairs for each tumor (330 data points per gate

type, from 33 tumors 3 10 top combos) and quantified their tu-

mor-versus-normal discrimination potential using F1. As shown

in Figure 2A, current clinical antigens on average lack sensitivity

and specificity when used as the sole recognition antigen (mF1 =

0.09). However, combining two clinical antigens with AND or

NOT logic for tumor recognition leads to significant improvement

in both precision and recall as seen by the jump in F1 (mtop10 F1 =

0.25; Wilcoxon rank sum p = 5.96 3 10�32; n = 669). This sug-

gests that simple combinations of already well-verified CAR tar-

gets can greatly improve the discriminatory ability of CAR T cells.

Using the larger pool of novel antigens (that is, those identified by

our pipeline that are not currently being investigated in clinical tri-

als) allows for even more improvement in discrimination both

alone, as single antigens (mF1 = 0.37), and when paired with clin-

ical antigens (mtop10 F1 = 0.5;Wilcoxon ranksump= 1.333 10�46;

n = 676). Novel-novel pairings show even more potential (mtop10
F1 = 0.57). Taken together these results suggest that discrimina-

tion achievable by current clinical antigens can be dramatically

improved by incorporating them into antigen pairs recognized

by Boolean gated T cells.

We also looked at the highest cluster-based scoring clinical

and the highest antigen pair for each of the 33 individual cancer

types (Figure 2B). Thirty-one of the cancers examined showed
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Figure 2. Dual Antigen Use Greatly Improves the Precision of Cancer Detection

Antigen combinations were ranked by their clustering scores for each tumor and each gate type (e.g., clinical, novel, clinical-clinical, clinical-novel, or novel-

novel). In this figure different subsets of the top antigens (e.g., the top scoring singlet/pair or the top 10 combinations) are taken and their F1 scores are used to

describe their potential discriminatory power.

(A) Distribution of tumor-versus-normal discrimination scores (F1) for the top clinical antigens or top 10 novel antigens for each cancer type, and for the top 10

antigen pairs (clinical-clinical, clinical-novel, or novel-novel) for each cancer type. F1 scores range between 0 (no sensitivity and specificity) and 1 (perfect

precision and recall). Here, we see significant gains in discrimination power going from a clinical antigen to a single novel antigen (p = 8.413 10�69; n = 646) and

from a clinical-clinical antigen pair to a clinical-novel pair (p = 1,38 3 10�11; n = 660).

(B) Improvement in tumor-versus-normal discrimination with dual antigen recognition by cancer type. F1 scores are shown for the highest clustering score single

clinical antigen and the highest clustering score dual antigen pair. All antigen pairs improve over the highest performing single clinical antigen.

(C) Pie chart showing the composition of different gate types of pairs in the top 10 per tumor type. A AND B gates have high expression of both antigens, A AND

NOT B have high expression of one antigen and low expression of the second antigen. The majority of pairs are AND NOT gates.

(D) Novel antigens (hubs, blue) identified that form high-performing pairs with numerous current clinically targeted CAR antigens (spokes, orange). Edge weights

and color correspond to the number of applicable cancer types.

ll
Article

Cell Systems 11, 215–228, September 23, 2020 219



A

B

C

Figure 3. Numerous Potential Antigen Pairs Show Significant Improvement in the Precision of Tumor Recognition

(A) Examples of antigen pairs with improved tumor-versus-normal discrimination by switching from single to dual antigen recognition. 2D plots show expression

level of both antigens in normal tissue samples (gray) versus specific cancer-type samples (red). Navy circles show centroids for each of the normal tissue types

(legend continued on next page)
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marked improvement from the best clinical antigen to the best

double antigen (mDF1 = 0.58). Among these best pairs per cancer

type we saw reductions in overall cross-reactivity (mDprec =

0.76; n = 31) and an increase in sensitivity (mDrecall = 0.12; n =

31), with clinical-novel and novel-novel antigen pairs showing

the best discrimination performance. Comparing the abundance

of AND gates with AND-NOT gates reveals that AND-NOT gating

is more common among the identified high-performing antigen

pairs (Figure 2C).

Within the top 10clinical-novel antigens for eachof the 33 tumor

types (330 pairs), we found a subset of novel antigens that repeat-

edly form high-ranking antigen pairs with current clinical CAR

targets across multiple cancers. We show the most frequently

occurring three novel antigens in Figure 2D, along with their high-

est-ranking clinical pairings and prevalence across tumor types.

These novel antigens encode genes that have been noted by prior

groups to be upregulated in individual tumors and play a role in

tumorigenesis. This includes KREMEN2, a paralog of KREMEN1

that has recently been found to promote cell survival by blocking

KREMEN1 homo-dimerization and induction of cell death (Sumia

et al., 2019). GRIN2D a glutamate-dependent NMDA receptor

haspreviouslybeen found tobeupregulated incancerby IHC (Fer-

gusonetal., 2016), confirmingRNA-based results of thiswork, and

is believed to play a role tumor vascularization. The Cadherin EGF

LAG seven-pass G-type receptor 3 (CELSR3) has also been iden-

tified to be upregulated in malignancies and is believed to play a

role in cell-cycle regulation (Xie et al., 2020). Taken together, these

results highlight the power of our approach to systematically iden-

tify potentially useful novel antigens that can pair with current clin-

ical antigens, across many different tumor types, which otherwise

might have been ‘‘lost in the shuffle.’’

Examples of Antigen Pairs Predicted to Improve Tumor
Recognition
Our top possible antigen pairs as ranked by clustering score and

their ability to discriminate a given cancer type is available

through an interactive webserver (http://antigen.princeton.edu).

The webserver allows users to browse top single and doubles

per tumor type and generate an interactive scatterplot for any

possible transmembrane pair. In Figure 3, we highlight a few ex-

amples of high-performing antigen pairs (high clustering scores).

These 2D scatterplots show the RNA-seq expression level (as

log transformed TPM counts) of both antigens where each sam-

ple is represented by a point—red signifying cancer samples and

light gray signifying normal tissue samples. Dark circles highlight

the centroids for each normal tissue type, as labeled. In these

plots, a high degree of separation occurs when a cluster of can-

cer (red) samples are segregated away from the bulk of normal

tissue samples. This segregation can occur in the upper right

quadrant (high:high representing AND gate); in the upper left

quadrant (low:high representing AND-NOT gate), or lower right

quadrant (high:low, AND-NOT gate).
(labeled when close to red cancer cluster). Pairs were scored by clustering as well

normal (gray) tissue are plotted on respective axis, including an optimal point of

using a single antigen.

(B) Example 2D plots as in (A) highlighting potential AND gates that combine k

potential antigens (clinical-novel), and pairs of new potential targets (novel-nove

(C) Example 2D plots as in (B) highlighting potential NOT gates.
The RNA-seq expression data show significant overlap be-

tween tumor and normal tissue for single clinical antigens

currently being tested as CAR targets in clinical trials (Figure 3A),

suggesting that true discrimination between tumor and normal

tissue using single antigens may be quite difficult. This overlap

is greatly reduced by combining information from both antigens,

with a concomitant improvement in the calculated F1 score. The

plots shown in Figure 3 represent only a small fraction of possible

high-performing combinations. Other examples are also shown

in Figure S3, with all other examples accessible via the web-

server. We discuss some of these specific antigen pairs in the

following sections.

Experimental Validation: Secondary Antigens that
Improve CAR T Recognition of Renal Cell Carcinoma
This analysis provides a very large dataset of potential antigen

pairs (on the order of hundreds of thousands; Figure S2B) for

clinical translation as AND gate CAR T cells, many of which are

actionable using currently available antigen recognition do-

mains. To outline how antigen pairs can be translated to cellular

design and to validate our bioinformatic predictions, we have

constructed a pair of engineered cell designs capable of specif-

ically recognizing RCC. Two predicted examples of combinato-

rial antigens for RCC recognition are shown in Figure 4.

RCC is known to overexpress the tumor associated antigens

CD70 and AXL (Jilaveanu et al., 2012; Yu et al., 2015), which

we experimentally confirmed in an RCC cell line (769-P) (Fig-

ure S4A). Both of these antigens are currently involved in CAR

T trials. However, as single CAR targets they are imperfect.

CD70 is also expressed on a number of blood cells, including

activated T cells, germinal center B cells, and dendritic cells in

lymph nodes (Hintzen et al., 1994; Tesselaar et al., 2003). AXL

is also expressed in many normal tissues including the lung

(Qu et al., 2016). However, we find that the cross-reactive normal

tissues for these two antigen targets are non-overlapping and,

thus, the combination of these two complementary clinical anti-

gen targets is predicted to greatly improve discrimination of tu-

mor-versus-normal tissue (Figure 4A).

To take advantage of this complementary pair of AND antigens

for RCC, we engineered a CAR that recognizes CD70 using its

cognate binding partner CD27 as the recognition domain

(Wang et al., 2017). In vitro cytotoxicity assays showed that

this CAR T cell was able to clear a RCC line (769-P) but also

showed significant cytotoxicity against a B cell line (Raji cells).

To create a T cell that recognizes AXL AND CD70, we first engi-

neered a synNotch receptor (Morsut et al., 2016) using an a-AXL

scFv recognition domain fused to the Notch transmembrane

domain and an orthogonal transcription factor (GAL4-VP64).

We found that T cells expressing an a-AXL synNotch that are

co-cultured with RCC cells activate a synNotch GFP reporter;

in contrast, the same T cells co-cultured with Raji B cells, which

do not express AXL, do not activate the AXL synNotch receptor.
as by F1 score. Density function of single antigen expression in tumor (red) and

discrimination showing the best potential tumor-versus-normal discrimination

nown CAR target pairs (clinical-clinical), known CAR targets paired with new

l).
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Figure 4. Computationally Predicted Antigen Pairs Can Be Constructed as AND-Gated CAR T Cells in a Laboratory Setting, with Precise

In Vitro Discrimination

(A) RCC recognition circuit: CD70 and AXL. Segregation of RCC samples (red points) versus normal tissue samples (gray points) in antigen expression space,

highlighting overlap of CD70 expression with normal blood samples (green points). We constructed an anti-AXL synNotch receptor and validated that human

T cells expressing the receptor can detect 769-P renal cell cancer cell line (CD70+AXL+), but not Raji B cell line (CD70+AXL�) via FAC detection of GFP reporter

induction. In cell killing assays, we compared human primary CD8+ T cells constitutively expressing the anti-CD70 CAR with the same cells transfected with the

anti-AXL synNotch driving anti�CD70 CAR AND-gate circuit. The single antigen targeting anti-CD70 CAR T cells killed both RCC and B cell lines, while the circuit

T cells selectively killed RCC cells (n = 3, p value from unpaired two sample student’s t test).

(B) RCC recognition circuit: AXL and CDH6. Segregation of RCC samples (red points) versus normal tissue samples (gray points) in antigen expression space,

highlighting overlap of AXL expression with normal lung samples (green points). We constructed an anti-CDH6 synNotch receptor and validated that human

T cells expressing the receptor can detect 769-P renal cell cancer cell line (AXL+CDH6+), but not the Beas2B lung epithelial cell line (AXL+CDH6�) via FAC

detection of GFP reporter induction. In cell killing assays, we compared human primary CD8+ T cells constitutively expressing the anti-AXL CAR with the same

cells transfected with the anti-CDH6 synNotch driving anti�AXLCARAND-gate circuit. The single antigen targeting anti-AXLCAR T cells killed both RCC and lung

cell lines, while the circuit T cells selectively killed RCC cells (n = 3, p value from unpaired two sample student’s t test).
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We then engineered AND gate T cells in which an a-AXL syn-

Notch drives expression of a CD70 CAR. We find that this AND

circuit caused the specific lysis of RCC cells, but not of Raji B

cells (Figure 4A). Thus, the combinatorial recognition of AXL

AND CD70 improves upon the CD70 single target CAR, allowing

discrimination between RCC cells and B cells.

Similarly, the single target a-AXL CAR is by itself a potential

treatment for RCC (Zhu et al., 2019). However, as above target-
222 Cell Systems 11, 215–228, September 23, 2020
ing AXL is predicted to have toxic cross-reactivity with lung tis-

sue. We constructed an AXL CAR, and when expressed in hu-

man primary CD8+ T cells it was found to have cytotoxic

activity against both an RCC cell line and an immortalized lung

epithelial cell line (Beas2B) (Figure 4B). Based on the current bio-

informatics analysis of combinatorial antigens, we predicted that

the novel antigen CDH6 (cadherin 6), which has not previously

been used as cellular therapy target, would improve the
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Figure 5. Antigen Triplets Can Significantly Improve Recognition of Challenging Cancers with Some Reduction in Sensitivity

(A) (Left) Distribution of tumor-versus-normal discrimination scores (F1) for top 10 antigen singlets, doublets, and triplets. We see significant performance im-

provements going from 1 to 2 antigens (p = 7.683 10�68; n = 2,979) and 2 to 3 antigens (p = 2.833 10�48; n = 1,578). The same plot is shown on the right for top 10

clinical antigen singlets, clinical-novel antigen doublets, and clinical-clinical-novel antigen triplets. Again, we see significant increases in performance going from

clinical to clinical-novel pairs (p = 6.063 10�81; n = 676) and from clinical-novel pairs to clinical-clinical-novel triplets (p = 5.003 10�8; n = 438). F1 scores range

between 0 (no sensitivity and specificity) and 1 (perfect precision and recall).

(B) Improvement in tumor-versus-normal discrimination with triplet antigen recognition by cancer type. F1 score ranges from best single clinical antigen (gray

circle) to best double with at least one clinical antigen (blue circle) to best triplet with at least one clinical antigen.

(C) Pie chart showing the composition of different gate types (high:high:high, high:high:low, and high:low:low) of triplets in the top 100 per tumor type.

(D) Each gray dot represents the precision (left) or recall (right) for one of the top antigens (single, double, and triples) for a single tumor type. Gray lines show the

median illustrating the global increase in precision when including more antigens at the expense of recall. Precision has a significant increase and recall a

(legend continued on next page)
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precision of an AXL CAR (Figure 4B). CDH6 is a protein that me-

diates calcium-dependent cell-cell adhesion with PAX8 lineage-

linked expression (de Cristofaro et al., 2016) in the fetal kidney

(Mbalaviele et al., 1998) as well as proximal tubule epithelium

and is overexpressed in renal and ovarian cancer (Paul et al.,

1997). A synNotch receptor targeting CDH6 was generated by

screening four potential CDH6 scFv’s fused to the synthetic

Notch core receptor. We found that a-CDH6 synNotch receptors

expressed in human primary T cells would specifically drive GFP

reporter activity when co-cultured with an RCC cell line, but not

with CDH6 negative lung epithelium cells (Beas2B). When we

constructed an AND-gate T cell with a-CDH6 synNotch driving

expression of an a-AXL CAR, we found that specific lysis was

only seen for the RCC cell line, and not the lung epithelial cell

line. Thus, the combinatorial recognition of CDH6 and AXL im-

proves upon the AXL single target CAR in that it allows discrim-

ination between RCC cells and lung epithelial cells.

These two examples show that there are multiple ways to

improve recognition of a specific cancer like RCC by harnessing

combinatorial antigen recognition. In total, our analysis predicts

25 antigen pairs that discriminate RCC from normal tissues with

a clustering score of >0.85 (Figure S2B). This set of experiments

illustrates a pipeline by which improved combinatorial CAR T cir-

cuits can be computationally identified and validated.

Triple Antigen Combinations Increase Precision of
Cancer Recognition but with Trade-Off of Reduced
Recall
Adding a third antigen helps improve overall discrimination per-

formance across tumor types. We observed an overall increase

in classification performance with each additional antigen, aver-

aged over the top 10 combos for all tumor and gate types (Fig-

ure 5A). With significant increases in the mean F1 from 1 to 2 an-

tigens (mF1 single = 0.15; mtop10 F1 double = 0.37; Wilcoxon

ranksum p = 7.86 3 10�68; n = 2,979) and for 2 to 3 antigens

(mtop10 F1 triple = 0.58; Wilcoxon ranksum p = 2.83 3 10�48;

n = 1,578). Likewise, we see a significant increase in discrimina-

tion potential, moving from a clinical to a clinical-novel pair (mF1
C = 0.09; mtop10 F1 C:N = 0.5; Wilcoxon ranksum p = 6.06 3

10�81; n = 676) and to a clinical-clinical-novel triplet (mtop10 F1
C:C:N = 0.66, Wilcoxon ranksum p = 5.003 10�8; n = 438), sug-

gesting that novels still have additional value when combined

with two clinical antigens.

Looking across the top 100 gates per cancer we find that the

majority of triples (92%) have at least one NOT element, with over

half (56%) having two antigens that have low expression in the

target (AND-NOT-NOTs, Figure 5C). Such a high percentage of

NOTs further highlights the importance of synthetic NOT gates

and our in silico approach, as more naive approaches such as

combining cancer specific markers in AND gates would miss

many of the highest discriminatory combinations.

Perhaps the greatest benefit of adding a third antigen is the

improvement we observe in recognizing challenging cancers.

Cholangiocarcinoma, in particular, was the tumor type that
significant decrease when going from one to two (precision:Wilcoxon rank sump =

and two to three antigens (precision: Wilcoxon rank sum p = 5.69 3 10�84, n = 1

(E) Example 3D triplet antigen gates showing expression level of all antigens in n

centroids are in dark blue. Triplets were scored by clustering as well as by F1 sc
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was the hardest to discriminate, with a max F1 score of 0.26

for a pairing of two novel antigens. When adding a third antigen,

we were able to reduce predicted off-target toxicity and increase

sensitivity, by combining a lower-scoring clinical-novel pair with

an additional novel antigen, increasing the max F1 score by 0.31.

Encouragingly, we also see substantial increases in the

maximum discrimination performance for several other cancer

types as well (Figure 5B).

While we see increases in overall performance for many can-

cers, we also noticed that for some tumor types we do not see

a big gain in recognition going from two to three antigens. This

is because overall the gains in precision come at a cost of

reduced recall. Looking at both the precision and recall of the

top combinations per each gate per tumor in Figure 5D, we

see as we go from one to two to three antigens we achieve nearly

perfect average precision (m precision single = 0.07, mtop10 preci-

sion double = 0.44, and mtop10 precision triple = 0.90), and this in-

crease is significant from one to two (Wilcoxon rank sum p =

2.45 3 10�120, n = 2,979) and two to three (Wilcoxon rank sum

p = 5.69 3 10�84, n = 1,578). However, with each additional an-

tigen there is a significant reduction in the average recall (m recall

single = 0.66, mtop10 recall double = 0.52, mtop10 recall triple =

0.47; 1 to 2: Wilcoxon rank sum p = 3.55 3 10�9, n = 2,979; 2

to 3: Wilcoxon rank sum p = 5.94 3 10�4; n = 1,578). Taken

together, we can conclude that 2–3 antigens are likely to be suf-

ficient for precise recognition of most tumor types.

Like our examples in Figure 3, we also highlight a few exam-

ples of high-performing antigen triplets in Figure 5E. As in the

2D scatterplots, red dots are samples are those of a particular

cancer type (e.g., mesothelioma [left] andmelanoma [right]), light

gray are normal tissues, and dark blue are highlighting the

normal tissue centroids. In both of these example triplets, the

additional antigen gives a big boost to the overall separation of

tumor and normal tissue samples, yielding fairly precise triplets

that suffer slightly from reduced recall. We showmore examples

along with their corresponding 2D plots in Figure S5.

DISCUSSION

Targeting Antigen Combinations Could Significantly
Improve Tumor Recognition
This analysis, based on available gene expression datasets, pre-

dicts that using Boolean antigen combinations can significantly

improve the selectivity of tumor recognition and avoidance of

normal tissue cross-reactivity. Thus, using Boolean multi-anti-

gen detecting engineered T cells has the potential to have a ma-

jor impact on cancer recognition and the development of next

generation cellular therapies.

We find that adding new antigens to current clinically action-

able CAR targets via AND or AND-NOT Boolean recognition is

predicted to significantly increase cancer versus normal tissue

discrimination. Moreover, we can find many novel antigen pairs

that show even stronger and near ideal discrimination. All can-

cers show at least several (> 25) antigen pairs above a clustering
2.453 10�120, n = 2,979; recall: Wilcoxon rank sump = 3.553 10�9, n = 2,979)

,578; recall: Wilcoxon rank sum p = 5.94 3 10�4; n = 1,578).

ormal tissue samples (gray) versus specific cancer-type samples (red). Tissue

ore.
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score cutoff of 0.85, with many having thousands of strong pairs,

suggesting a potential therapeutic avenue for all tumor types

when using a pair of antigens (Figure S2C). Furthermore, with

the addition of triples, every cancer type examined here has a

promising clustering-based score and an F1 score above 0.5

(out of ideal 1.0). Thus, there are likely to be many options of

multi-antigen signatures that could be used to recognize any

one type of tumor.

2–3 Antigen Combinatorial Circuits May Be Sufficient to
Achieve Strong Cancer versus Normal Tissue
Discrimination
Notably, when we examine the precision and recall of detection,

we see for top performing gates, that as the number of antigens

used for detection is increased from two to three, mean precision

approaches perfection while the recall declines (Figure 5D). This

suggests that further improvement in therapeutic cell discrimina-

tory potential will require more narrow sub-classifications of

tumor type; either by pathologic or molecular subtypes (e.g.,

triple-negative versus HER2-positive versus hormone receptor-

positive breast cancer) of cancers defined in TCGA. This number

of antigens also matches well with current synthetic biology

tools, as integrating 2–3 receptor circuits is possible with current

gene transfer methods (e.g., lentiviral transduction), while four or

more receptor circuits would require significant improvements in

vector payload capacity.

Limitations of This Analysis and Future Challenges
This study shows that combinatorial antigen recognition is pre-

dicted to yield much higher tumor discrimination than single an-

tigen recognition. Nonetheless, the exact degree of this improve-

ment, as well as the exact combinations that could be most

clinically useful remain less clear, as there remain caveats in in-

terpreting these data. First, this analysis is based on gene

expression data, while T cell recognition is mediated by protein

expression. At this time, there is far less extensive protein

expression data covering both cancer and normal cells, so we

leveraged the vast amount of gene expression data as a proxy.

Second, while GTEx covers most major tissues, we still have

an incomplete set of normal tissue expression. Recent develop-

ments in single-cell sequencing will help to bridge the gap,

providing cleaner and more detailed snapshots of expression

in healthy cells, while having the additional benefit of helping

us account for normal cells that may be present in bulk cancer

samples. Once more widely available, integration of single-cell

RNA-seq data of normal and tumor cells would improve the

specificity of this analysis even further.

Finally, optimal discrimination also involves setting antigen

detection thresholds—exactly where the cutoff lines of high

and low expression is important for discrimination (Figure 1B).

In cases where we observe large distances between tumor

and normal samples, separation is extremely robust and conse-

quently, shifting threshold cutoffs makes little difference in F1. In

the other cases, however, F1 scores are highly sensitive to shifts

in cutoffs. This is why we chose to first rank potential antigen

combinations by clustering scores and then use a classifier to

evaluate performance. Focusing primarily on maximizing sepa-

ration distance ensures that more of our top pairs are robust to

thresholding. Experimentally, optimizing cutoff thresholds is
challenging, since we currently have poor control in determining

what antigen densities are detected by CARs. However, new ef-

forts are ongoing to develop methods for tuning antigen detec-

tion cutoffs and sharpness, whichmay help significantly in taking

advantage of expression level differences, providing an addi-

tional untapped source of discrimination information.

It is interesting that the list of current clinical antigens under

investigation as CAR targets in solid tumors performs rela-

tively poorly compared with the large set of novel antigens

identified here. It may be that many of the computationally

predicted antigens do not account for detailed biological

and physiological factors. The discrepancy could also simply

be observed because of poor correlation of gene expression

with protein expression, or perhaps, because many of the clin-

ically distinguishing markers have not been directly compared

with all other healthy cells throughout the body. Clearly, dis-

ease-specific expert knowledge will be critical to filter the an-

tigens identified here. In some cases, however, there might be

some historical expert bias, where focus has been unequally

placed on antigens identified early in the study of a disease.

We suspect that several of the novel antigens that are identi-

fied to form high functioning pairs with many current clinical

antigens (Figure 2D) should be further investigated in

future work.

Combining Bioinformatics with Antigen Recognition
Circuit Design toOptimize Solid Cancer TCell Therapies
Despite the above caveats, this analysis indicates that combina-

torial antigen recognition is likely to be able to make a significant

contribution to the treatment of at least some, if not all, solid can-

cers by engineered therapeutic cells. This analysis drives home

the point that recognition of tumors has to take into account a

broad set of parameters, such as how much overlap there is in

expression in normal tissues, and how shared the antigens are

among patient populations. Gratifyingly, we can see the potential

combinatorial antigen circuits have to carve this complex antigen

recognition space into smaller defined sectors with better tumor-

versus-normal tissue discrimination. In principle with AND, OR,

and NOT functions, we can break up the antigen space in

many flexible ways.

This analysis provides a roadmap for a new vision of precision

medicine that more deeply integrates in silico data analysis with

capabilities emerging from synthetic biology and cell design. In

this case, large-scale genomic data are not used to stratify pa-

tients based on likelihood of response to a drug, but rather the

data become the guide for how to best design a smart cellular

drug. Here, we search for opportunities to discover, within the

multidimensional space of antigens, the signatures that can offer

us the optimal recognition discrimination. Given the very large

size of this database, as well as the thousands of potential anti-

gen combinations that could be created, we have provided these

data in a webserver for the community to interrogate potential

antigen pairs or triplets for all cancers within the TCGA

(Figure 6B).

The range of recognition functions that we can achieve will

likely have a major impact on how engineered cell therapies

can detect cancer and other diseases. The variety of recognition

modalities means that we have great potential to sector multidi-

mensional antigen space in a diversity of ways to find those ways
Cell Systems 11, 215–228, September 23, 2020 225
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Figure 6. In Silico T Cell Circuit Design: Expansive Search and Provided Resources

(A) In silico analysis of tumor-versus-normal expression data can be used to identify discriminatory antigen patterns. These potential antigen signatures can then

be used as the basis for synthetic biology engineering of precision therapeutic T cells.

(B) We have generated an interactive webserver that allows public access to the datasets used in this paper; allowing users to identify potential discriminatory

singlets, doublets, and triplets for cancer detection in the future (antigen.princeton.edu).
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that best segregate disease tissues from normal tissues. Thus,

harnessing the computational capabilities of living cells, and us-

ing in silico analysis to guide their deployment, provides a broad

new frontier for recognizing and attacking complex diseases

such as cancer.
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CellTrace Far Red Thermo Fisher Cat#C34564

CellTrace CFSE Thermo Fisher Cat#C34554

Critical Commercial Assays

RosetteSep Human CD8+ T cell Enrichment

Cocktail

STEMCELL Technologies Cat#15023
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STEMCELL Technologies Cat#15022
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Experimental Models: Cell Lines

LentiX 293T Clontech Cat#11131D

Raji cells ATCC Cat#CCL-86
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pHR_Gal4UAS_PGK_mCherry Addgene ID#79124

pHR_Gal4UAS_tBFP_PGK_mCherry Addgene ID#79130

pHR_SFFV_antiCD70_BBZ This paper CD27 sequence from UniPortKB – P26842

(CD27_Human)

pHR_SFFV_antiAXL_BBZ This paper scFv sequence in WO2012175691A1

pHR_pGK_antiAXL_synN_G4VP64 This paper scFv sequence in WO2012175691A1

pHR_pGK_antiCDH6_synN_G4VP64 This paper scFv sequence in W02016024195A1

pHR_Gal4UAS_antiCD70_BBZ_PGK_BFP This paper CD27 sequence from UniPortKB – P26842

(CD27_Human)

pHR_Gal4UAS_antiAXL_BBZ_PGK_BFP This paper scFv sequence in WO2012175691A1

Software and Algorithm

Prism Version 7a Graphpad N/A

FlowJo V10.4.0 TreeStar N/A

rpart package R https://cran.r-project.org/web/

packages/rpart/

R version 3.5.3 R N/A

ComBat in SVA package R https://www.bioconductor.org/packages/

release/bioc/html/sva.html

clustscore and analysis This paper https://github.com/ruthanium/antigen-

combos-scripts

Deposited Data

COMPARTMENTS (cellular location data) Binder et al. 2014 https://compartments.jensenlab.org

Other

Webserver for exploring the data in this

publication
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, (Wendell.

lim@ucsf.edu). To ensure a fast response, please copy Noleine.Blizzard (noleine.blizzard@ucsf.edu) and Michael Broeker (Michael.

Broeker@ucsf.edu) in any requests related to the paper.

Materials Availability
Plasmids generated in this study are in the process of being deposited to AddGene.

Data and Code Availability
The R and python code used to score antigen combinations along with methods for regenerating themajor figures in this paper freely

available for non-commercial use and is deposited in GitHub at https://github.com/ruthanium/antigen-combos-scripts.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Source of Primary Human T cells
Blood was obtained from Blood Centers of the Pacific (San Francisco, CA) as approved by the University Institutional Review Board.

Primary CD4+ and CD8+ T cells were isolated from anonymous donor blood after apheresis (described in methods).
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METHOD DETAILS

Defining the Space of Candidate Antigens
We defined potential candidate antigens as genes with known or predicted cell surface expression, restricting our search space to

current clinical targets and genes coding for transmembrane proteins. More specifically, we assembled a set of 29 unique clinical

antigens along with their indications that have shown promise in the literature or are targets in currently active CAR or TCR trials

and mapped them to their corresponding genes. To assemble the list of transmembrane proteins we started with a list of putative

transmembrane genes then filtered by localization to the plasmamembrane as annotated in the COMPARTMENTS database (Binder

et al., 2014) with high confidence (level 3 or higher), yielding a list of 2,358 genes. The COMPARTMENTS database uses a combi-

nation of manually curated literature, text mining, high-throughput screens, and sequence prediction methods to make subcellular

location predictions.

Gene Expression Data Processing
We gathered gene level RSEM processed TPM counts for healthy human tissue samples from the Genotype Tissue Expression

(GTEx) project version 7 and gene level RSEM processed tumor samples from The Cancer Genome Atlas (TCGA) firehose. All

together there were 21,486 samples covering 34 tissues and 33 cancer types (see Table S2 for individual breakdowns per tissue

and tumor type). To remove differences due to technical variation and thus combine these data from these two different sources

we applied batch correction using a parametric empirical Bayes framework using the COMBAT function in the SVA R package (John-

son et al., 2007).

Intelligent Subsampling and Data Partitioning
To increase the speed of our clustering score calculations as well as partition our data into training and test sets we used geometric

sketching (Hie et al., 2019). Geometric sketching allows us to subsample the space of samplesmaintaining the overall structure of the

data by fitting a plaid covering and sampling points from within each region of the covering. In simulations across 8 different sketch

sizes for 5 iterations across 100 gene pairs (10 fixed genes paired with 10 random genes) we observed no loss of performance (see

Figure S2B) when calculating Davies-Bouldin and Manhattan distance but substantial gains in runtime. Based on these simulations

we chose to use a sketch size of 20% of all data for calculating clustering-based scores as well as the training data for classification

and the remaining 80% of the data was held out for testing our classification models.

Clustering-Based Scores
We chose to adapt a method used to evaluate clustering, Davies-Bouldin (DB), to measure the ratio of within cluster spread to cluster

distance. We considered the case where there are 2 clusters: a tumor cluster (given set of tumor samples) and a tissue cluster (all

normal tissues samples). Lower DB scores are better as they indicate less within cluster distance (more tightly packed samples)

and more distance between the cluster centers (more distance between tumor and normals). More formally, we use the following

equations to calculate DB:

DB =
Si +Sj

Mi;j

whichmeasures the ratio of scatter between the target tumor type (Si) and the cluster of normal tissues (Sj) to the distance between

the two clusters. Scatter for each cluster is calculated using:

Si =
1

Ti

XTi
j =1

��Xj �Ai

��

where Ti is the number of samples in a given cluster and Xj is the location of a given sample and its distance from its cluster

centroid (Ai).

The distance between the clusters, Mi, is calculated by subtracting the distance of the two cluster centers.

Mi;j =
��Ai �Aj

��
Where Ai is the centroid of the cancer cluster, and Aj is the centroid of the normal tissue cluster.

To give extra weight to the distance between clusters, we also calculated the Manhattan distance (d) between the normal and the

tumor clusters and used this in the final clustering score. To compute a more interpretable clustering-based score to use throughout

our search, we rescaled log DB and log distance values across all gene pairs and tumor samples to be between 0 and 1, where 1

represents the best (smallest) DB score and the largest scaled distance. The minimum of these two scores is the final clustscore,

thus a clustscore of 1 has the smallest DB and largest distance. Formally,

clustscoret;pi;j = min
i;j

� log
�
DBt;pi;j

�
�min

t;x
ðlogðDBt;xÞÞ

max
t;x

ðlogðDBt;xÞÞ �min
t;x

ðlogðDBt;xÞÞ;
log

�
dt;pi;j

�
�min

t;x
ðlogðdt;xÞÞ

max
t;x

ðlogðdt;xÞÞ �min
t;x

ðlogðdt;xÞÞ
�
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where t is a tumor type and pi,j is a pair of genes made up of gene i and gene j and the min and max scores are calculated over

all pairs.

Search Space Reduction for Triples
To reduce the number of transmembrane and clinical antigens for triple antigen search we looked at the performance of single an-

tigens to create a smaller set of potential antigens per tumor type. The intuition being that each antigen must contribute at least a

small amount of improvement to be a high scoring triple. To be included in the set of putative antigens per cancer, we required a

single antigen to have a Davies-Bouldin score <= 5 and a Manhattan distance > 2. This filtering reduced the potential antigens to

the following: Acute Myeloid Leukemia: 525, Adrenocortical Carcinoma: 169, Bladder Urothelial Carcinoma: 68, Brain Lower Grade

Glioma: 361, Breast Invasive Carcinoma: 48, Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma: 118, Cholan-

giocarcinoma: 69, Colon Adenocarcinoma: 131, Esophageal Carcinoma: 40, Glioblastoma Multiforme: 274, Head and Neck Squa-

mous Cell Carcinoma: 102, Kidney Chromophobe: 140, Kidney Renal Clear Cell Carcinoma: 30, Kidney Renal Papillary Cell Carci-

noma: 115, Liver Hepatocellular Carcinoma: 110, Lung Adenocarcinoma: 27, Lung Squamous Cell Carcinoma: 59, Lymphoid

Neoplasm Diffuse Large B-cell Lymphoma: 416, Mesothelioma: 93, Ovarian Serous Cystadenocarcinoma: 102, Pancreatic Adeno-

carcinoma: 36, Pheochromocytoma and Paraganglioma: 233, Prostate Adenocarcinoma: 60, Rectum Adenocarcinoma: 118, Sar-

coma: 64, Skin Cutaneous Melanoma: 194, Stomach Adenocarcinoma: 35, Testicular Germ Cell Tumors: 125, Thymoma: 205, Thy-

roid Carcinoma: 72, Uterine Carcinosarcoma: 90, Uterine Corpus Endometrial Carcinoma: 86, and Uveal Melanoma: 299. The

clustering scores were then calculated as described in the above section.

Evaluation of Top Clustering-Based Scores
We chose the top 10 antigen pairs per antigen class (C:C, C:N, and N:N) for each tumor based on their clustering scores for a total of

�330 pairs per tumor type. Within the top 10 per class per tumor we only allowed a particular gene in a pair to appear a maximum of

two times, preventing potential pairs from being dominated by a single genewith high separation.We further restricted our analysis to

single antigens that are high, and pairs of antigens that have at least one antigen predicted to have high expression (high:high, high:-

low, and low:high) pairs.

To calculate the discriminatory ability of any particular antigen or antigen combination we constructed decision tree (DT) models on

the 20% training partition using antigen expression as features and evaluated performance on the held out 80% of the data. More

explicitly, for antigen pairs we used the rpart R package to construct two single feature decision trees with c=-1 and a max depth=1

forcing each tree to have a single split. We then used these splits to draw a classification boundary and calculated precision (the pro-

portion of predicted positives that are correct), recall (the proportion of real positives that are predicted positive), and F1 scores (the

harmonic mean of precision and recall), as shown in the following:

F1 =
precision,recall

precision+ recall

Construct Design
All synNotch receptors used in this study were built using the mouse Notch1 (NM_008714) minimal regulatory region (Ile1427 to Arg

1752). The following binding domains were engineered into synNotch receptors: a-AXL scFv (Grada et al., 2013; Hegde et al., 2013)

(https://patents.google.com/patent/WO2012175691A1/en), and the a-CDH6 scFv clone V10 (https://patents.google.com/patent/

WO2016024195A1/en). synNotch receptors were designed to include either Gal4 DNA-binding domain (DBD) VP64 fusion proteins

as a synthetic transcription factor. All synNotch receptors contain an N-terminal CD8a signal peptide (MALPVTALLLPLALLLHAARP)

for membrane targeting. Following the CD8a signal peptide, Gal4 synNotch receptors contain a myc tag (EQKLISEEDL) for easy and

orthogonal surface detection with a-myc AF647 (Cell Signaling #2233) AF488 (R&D Systems #IC8529G), respectively.

All CARs used in this study were designed by fusing scFvs to the human CD8a chain hinge and transmembrane domains and the

cytoplasmic regions of the human 4-1BB and CD3z signaling proteins. The following binding domains were engineered into CARs:

a-AXL scFv (https://patents.google.com/patent/WO2012175691A1/en), and the CD27 extracellular domain. All CARs included an

N-terminal V5 tag for easy detection with a-V5 PE (Thermo Fisher #12-6796-42). All CARs contain an N-terminal CD8a signal peptide.

For experiments with T cells expressing a synNotch receptor the Gal4 system was utilized, and the receptors were cloned into a

modified pHR’SIN:CSW vector containing a constitutive PGK promoter. For these experiments, the pHR’SIN:CSW vector was also

modified to make the response element plasmids. Five copies of the Gal4 DNA binding domain target sequence (GGAG-

CACTGTCCTCCGAACG) were cloned 5’ to a minimal CMV promoter. Also included in the response element plasmids is a PGK pro-

moter that constitutively drives mCherry or BFP expression to easily identify transduced T cells. For all synNotch response element

vectors, the inducible transgene (e.x. CAR or TCR) was cloned via a BamHI site in the multiple cloning site 3’ to the Gal4 response

elements. All constructs were cloned via InFusion Cloning (Takara Bio #638910).

Primary Human T Cell Isolation and Culture
Primary CD4+ and CD8+ T cells were isolated from anonymous donor blood after apheresis by negative selection (STEMCELL Tech-

nologies #15062 and 15023). T cells were cryopreserved in RPMI-1640 (Corning #10-040-CV) with 20% human AB serum (Valley

Biomedical, #HP1022) and 5% DMSO (Sigma-Aldrich #472301). After thawing, T cells were cultured in human T cell medium
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consisting of X-VIVO 15 (Lonza #04-418Q), 5% Human AB serum and 10 mM neutralized N-acetyl L-Cysteine (Sigma-Aldrich

#A9165) supplemented with 30 units/ mL IL-2 (NCI BRB Preclinical Repository) for all experiments.

Lentiviral Transduction of Human T Cells and Target
Lenti-X 293T packaging cells (Clontech #11131D) were cultured inmedium consisting of Dulbecco’sModified EagleMedium (DMEM)

(Gibco #10569-010), 10% fetal bovine serum (FBS) (University of California, San Francisco [UCSF] Cell Culture Facility), and genta-

micin (UCSF Cell Culture Facility). Fresh packaging cells were thawed after cultured cells reached passage 30.

Pantropic VSV-G pseudotyped lentivirus was produced via transfection of Lenti-X 293T cells with a pHR’SIN:CSW transgene

expression vector and the viral packaging plasmids pCMVdR8.91 and pMD2.G using Fugene HD (Promega #E2312). Primary

T cells were thawed the same day, and after 24 hr in culture, were stimulated with Dynabeads Human T-Activator CD3/CD28 (Thermo

Scientific #11131D) at a 1:3 cell:bead ratio. At 48 hr, viral supernatant was harvested, and the primary T cells were exposed to the

virus for 24 hr. At day 5 post T cell stimulation, Dynabeadswere removed and the T cells expanded until day 12when they were rested

and could be used in assays. T cells were sorted for assays with a FACs ARIA II on day 5 or 6 post T cell stimulation.

Cancer and Target Cell Lines
The cancer cell lines used were Raji B cell Burkitt lymphoma cells (ATCC #CCL-86), and 769-P renal cell carcinoma cells (ATCC

#CRL-1933). Rajis and 769-Ps were cultured in RPMI 1640 with L-glutamine (Corning #10-040-CV) supplemented with 10% FBS.

The immortalized healthy tissue cell lines or primary human cells were Beas2B lung epithelial cells (ATCC #CRL-9609). Beas2B cells

were cultured in BEBM (Lonza #CC3171) supplemented with the BEGM kit (Lonza #CC-3170).

Levels of various antigens were determined via flow cytometry after staining cells with the following antibodies: a-CD70 APC (Bio-

legend #355109), a-AXL APC (R&D systems #FAB154A), and a-CDH6 AF647 (R&D systems #FAB2715R).

Antibody Staining and Flow Cytometry Analysis
All antibody staining for flow cytometry was carried out in wells of round-bottom 96-well tissue culture plates. Cells were pelleted by

centrifugation of plates for 4 min at 400 x g. Supernatant was removed and cells were resuspended in 50 mL PBS containing the fluo-

rescent antibody of interest. Cells stained 25 minutes at 4�C in the dark. Stained cells were then washed two times with PBS and

resuspended in fresh PBS supplemented with 1%FBS and EDTA for flow cytometry with a BD LSR II. All flow cytometry data analysis

was performed in FlowJo software (TreeStar).

In Vitro Stimulation of synNotch T cells
For all in vitro synNotch T cell assays (including both reporter and killing assays), T cells were co-cultured with target cells at a 1:1

ratio, with anywhere from 1e4-1e5 each/well. The Countess II Cell Counter (ThermoFisher) was used to determine cell counts for all

assay set up. T cells and target cells were mixed in 96-well tissue culture plates in 200 mL T cell media, and then plates were centri-

fuged for 1 min at 400 x g to initiate interaction of the cells. For assays with Raji, round-bottom 96-well plates were used. For assays

with all other target cells, flat-bottom 96-well plates were used. Cells were co-cultured for anywhere from 18 to 96 hours before anal-

ysis via flow cytometry with a BD LSR II.

Flow Cytometry-Based T Cell Cytotoxicity Assay
For all cytotoxicity assays, synNotch T cells, constitutive CAR or untransduced T cells were co-cultured with target cells at a 1:1 ratio

as described above. After intended periods of incubation, sampleswere centrifuged for 4min at 400 x g, after first being transferred to

a round-bottom 96-well plate if necessary. Supernatant was then removed and cells were resuspended in PBS supplemented with

1% FBS and EDTA for flow cytometry with a BD LSR II. Control samples containing only the target cells were used to set up flow

cytometry gates for live target cells based on forward and side scatter patterns. For assays with all other target cells, target cells

were gated on low CellTrace Far Red dye (Thermo Fisher #C34564) or low CD3 staining, as T cells used in these assays were either

labeled with CellTrace Far Red or the samples were stained with a-CD3 APC/Cy7 (Biolegend #317342) to specifically label T cells.

The level of target cell survival was determined by comparing the fraction of target cells alive in the culture compared to treatment

with untransduced T cell controls. Three technical replicates are performed for each experiment.
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