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Cells tightly regulate trafficking of intracellular organelles, but
a deeper understanding of this process is technically limited by our
inability to track the molecular composition of individual organ-
elles below the diffraction limit in size. Here we develop a tech-
nique for intracellularly calibrated superresolution microscopy that
can measure the size of individual organelles as well as accurately
count absolute numbers of molecules, by correcting for under-
counting owing to immature fluorescent proteins and overcount-
ing owing to fluorophore blinking. Using this technique, we
characterized the size of individual vesicles in the yeast endocytic
pathway and the number of accessible phosphatidylinositol 3-
phosphate binding sites they contain. This analysis reveals a char-
acteristic vesicle maturation trajectory of composition and size with
both stochastic and regulated components. The trajectory displays
some cell-to-cell variability, with smaller variation between organ-
elles within the same cell. This approach also reveals mechanistic
information on the order of events in this trajectory: Colocalization
analysis with known markers of different vesicle maturation stages
shows that phosphatidylinositol 3-phosphate production precedes
fusion into larger endosomes. This single-organelle analysis can
potentially be applied to a range of small organelles to shed light
on their precise composition/structure relationships, the dynamics
of their regulation, and the noise in these processes.
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Single-cell analysis of protein abundance has revealed cell-to-
cell variation in the form of phenotypic (extrinsic) hetero-

geneity and intrinsic variation (1). Dynamic processes such as the
cell cycle, endocytosis, and meiosis are regulated but also influ-
enced by stochastic events involving small numbers of molecules
(e.g., DNA transcription) (2, 3). Similarly, the size and molecular
composition of small subcellular organelles are dynamically regu-
lated but still subject to stochastic noise. Studying the biomolecular
composition and size of organelles will illuminate the regulation
and noise in these dynamically stable systems. A major challenge
for such exploration, however, is the development of a combined
approach for both resolving small structures below the optical
diffraction limit and simultaneously counting biomolecules over
several orders of magnitude (Fig. 1A).
In the endocytic pathway, both vesicle morphology and bio-

molecular composition are dynamically regulated along a mat-
uration path. Formation of vesicles, tethering, fusion, and matu-
ration to endosomes are controlled by over 60 proteins in concert
with conversion of phosphoinositides (PIs) (4, 5). Phosphatases
and PI-kinases produce phosphatidylinositol 3-phosphate (PI3P)
from plasma membrane phospholipids (6). PI3P is required for
endocytosis (7) and membrane transport to early and late endo-
somes (8, 9). PI3P regulates the recruitment of proteins (10), such
as Rab GTPases, which coordinate many aspects of vesicle identity
(11, 12) and maturation to endosomes, including tethering and
fusion (13–16). These master regulators also modulate PI3P

production; thus, there is mutual regulation between PI3P and
the Rabs (17).
Fluorescence microscopy has documented the localization and

dynamic exchange of proteins and PIs at different stages in the
endocytic pathway (18–20). In addition, structural studies using
electron microscopy complemented fluorescence studies by re-
vealing the shape and size of vesicles below the optical diffraction
limit together with qualitative protein localization (21, 22). How-
ever, owing to limitations of high-resolution counting techniques,
little is known about the relationship between the size and the exact
biomolecular composition of endocytic and endosomal vesicles
because these properties cannot be simultaneously measured by
the same technique. Because size and biomolecular composition
are major determinants of vesicle and endosome identity, such
knowledge could reveal mechanistic insights into how protein and
lipid conversion and vesicle fusion are regulated along the matu-
ration path. A precise measurement of these parameters would
allow us to study noise caused by stochastic fluctuations of involved
components in the endosomal maturation pathway.
Here, we develop an approach to simultaneously measure

vesicle size and composition using superresolution microscopy.
Single-molecule superresolution microscopy methods, more com-
monly known as stochastic optical reconstruction microscopy (23)
or photoactivated localization microscopy (24), are based on
localizing individual photoactivatable fluorophores through fitting
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their point-spread functions. These methods offer potential in-
formation about the local number of molecules, especially when
using photoactivatable fluorescent proteins (PAFPs) as the probe.
However, they have associated over- and undercounting errors
that must be corrected. For example, blinking of PAFPs such as
mEos2 has been shown to cause overcounting artifacts (25). Al-
though previous studies devoted effort to calibrating these effects
(25–28), variation of photophysical properties with experimental
conditions for compatible PAFPs complicates quantitative image
reconstruction. In addition, undetected fluorescent proteins owing
to problems such as misfolding lead to undercounting. Here, we
develop an intracellular calibration approach for single-molecule
superresolution microscopy by measuring the relevant photo-
physical parameters in cells under imaging conditions to correct
for blinking. By counting the number of molecules in protein
complexes of defined stoichiometry, we then determine the frac-
tion of undetected PAFPs, allowing us to calibrate and count
absolute numbers of molecules.
Applying this method to the yeast endocytic pathway allows us

to simultaneously measure the size of vesicles and endosomes
and the number of associated biomolecules, revealing a regu-
lated maturation trajectory of lipid conversion and fusion.
Established markers for different stages of vesicle-to-endosome
maturation (such as GTPases) colocalize with distinct regimes
on this maturation trajectory and reveal that the number of ac-
cessible PI3P binding sites on vesicles increases about 100-fold
before they start to fuse. By analyzing vesicle-to-vesicle variability
within and between cells, we identify noise sources in this mat-
uration trajectory and confirm our results by colocalization. Our
approach sheds light on the endocytic pathway and paves the way
for fundamental studies on the relationship between the number
of biomolecules and the size of small intracellular structures.

Results
Calibration of Single-Molecule Superresolution Microscopy Eliminates
Over- and Undercounting. The first challenge for accurately counting
fluorescently labeled molecules is overcounting owing to blinking.
As shown in previous studies, blinking of PAFPs can be corrected
by combining fluorescent bursts from a single molecule based on
a cutoff time determined from the measured characteristic dark-
time distribution (25, 27). In addition, it has been previously

reported that the detectable fraction of PAFPs can be substantially
smaller than 100% (29–31). Both the blink characteristics and the
detectable fraction are sensitive to the experimental conditions.
To solve this problem, we measured both effects in cells under the
exact same conditions as our actual experiments. Specifically, we
created three yeast strains for calibration, each constitutively
expressing low levels of either a single, double, or triple repeat of
mEos2 (32). The mEos2 repeats were fused to the plasma mem-
brane-localized Pleckstrin homology (PH) domain of Plcδ,
resulting in a ring of fluorophores around the periphery of the
cell (Fig. 1B, Left).
Before correction, blinking single mEos2 molecules falsely

appear closely clustered in time and space (Fig. 1B, Top). By
combining closely separated photoactivation events, we obtain
the photon-weighted average position of each molecule (Fig. 1B,
Top and Fig. S1). The counting histogram was created by
counting corrected molecule positions closer than 50 nm and by
subtracting background counts from cells lacking mEos2 (Fig.
S2). The small fraction of observed double counts is caused by
randomly overlapping molecules.
To evaluate our blink correction algorithm, we analyzed

superresolution images with the pair-correlation function (33)
(Fig. 1B, Right), which represents the distribution of distances
between any pair of two localization points. Uncorrected data
from 1×-mEos2 cells produces a pair-correlation function with
a pronounced peak (Fig. 1B, Top Right) reflecting the clustering
of localizations caused by blinking. Blink correction results in
a flat pair-correlation function, verifying the random distribution
of fluorophores and proper blink correction (Fig. 1B, Top Right).
In the blink-corrected data of 3×-mEos2 constructs, up to

three fluorophores appear in close proximity (<50 nm separa-
tion). A portion of mEos2 molecules is undetected, resulting in
observation of fewer than three molecules at same location. As
a result, the counting histogram follows a binomial distribution B
(N, F) (Fig. 1B, Bottom) and again exhibits a shoulder owing to
randomly overlapping 3×-mEos2 molecules. When multiple
fused mEos2 repeats are expressed, two or three mEos2 mole-
cules colocalize, causing the pair-correlation functions of the 2×-
and 3×-mEos2 constructs to display a peak at short distances.
The width of the peak (full width at half maximum 20nm) rep-
resents the experimental localization uncertainty (Fig. 1B, Middle
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Fig. 1. Intracellular calibration of superresolution micros-
copy allows counting of biomolecules in subdiffraction-
limit structures. (A) Intracellular structure size and num-
ber of biomolecules span several orders of magnitude.
(B) Resolution and counting accuracy are determined
using constructs with different mEos2 stoichiometry.
(Left) Superresolution images of calibration constructs
(red) are superimposed on transmitted light images of
yeast cells (gray). Single (1×, Top), double (2×, Middle)
and triple (3×, Bottom) repeats of mEos2 were constitu-
tively expressed as fusions with the membrane-localized
PH domain of Plcδ. (Center) The magnified fields depict
uncorrected (+) and corrected (X) single molecule posi-
tions. Each molecule and localization is color-coded by
frame number. The number of molecules per cluster is
fitted to a binomial distribution B(N,F) (red line). (Right)
Pair-correlation functions of corrected images reflect the
average distance between molecules, which is constant
for the single mEos2 repeat and peaked for the 2× and
3× repeat owing to colocalization. The peak width of
corrected 2× and 3× data are narrower than for un-
corrected data (only shown for 1×) and reflects the in-
crease in resolution by combining photons from all
fluorescent bursts to the molecule’s position. (C) Sum-
mary of calibration results. The ensemble values of cor-
rected molecules per cell exhibit a linear relation with an expected two- and threefold higher number of mEos2 molecules of the 2× and 3× repeat compared with
the single repeat. The table summarizes fraction of observable mEos2 molecules F from the single molecule counting data.
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and Bottom Right) because the mEos2 repeats should be at the
same position. This improved localization precision compared
with uncorrected data (see peak width of uncorrected data, Fig.
1B, Top) results from combining all detected photons to de-
termine each molecule’s position rather than distributing them
over multiple blinks.
By fitting the distribution of the observed number of PAFPs to

the known numbers in our strains (1×, 2×, and 3×-mEos2), we
determined the fraction of undetected mEos2 molecules to be
about 40%, allowing us to calibrate the observed number of PAFPs
(Fig. 1C). Using this calibration, we can count the absolute number
of PAFP-labeled molecules present in subcellular organelles and
protein complexes of unknown stoichiometry with a resolution of
20 nm. As shown in SI Materials and Methods and Fig. S1, this ap-
proach holds for up to hundreds of molecules per organelle without
undercounting artifacts owing to fluorescent overlap in time.

Measuring Maturing Vesicle Size and Counting Accessible PI3P
Binding Sites with Superresolution Microscopy. PIs define the
identity of endocytic vesicles and endosomal compartments by
providing specific binding sites for structural and regulatory
proteins (9, 13, 17, 34, 35). To spatially resolve vesicles and si-
multaneously measure the number of accessible PI3P binding
sites on their surfaces, we expressed mEos2 fused to a PI3P-
binding domain [a double FYVE domain of EEA1 (19, 34)].
Although this reporter cannot detect PI3P molecules shielded by

other proteins, it gives a stable measure (see also Fig. 3) of the
exposed pool also seen by regulatory proteins containing FYVE
fingers, such as Vac1p, Fab1p, and Vps27p. Constitutive FYVE–
mEos2 expression is driven by the weak pCyc promoter to
minimize possible interference with the endocytic pathway. In
blink-corrected images, vesicles are detected with high contrast
and resolved as circular structures (Fig. 2A). The high resolution
not only enables us to resolve the size of vesicles but also to sep-
arate vesicles that are close together. By applying our calibrated
superresolution microscopy approach, the absolute number N of
molecules in each vesicle as well as its diameter D are determined
(Fig. 2B). Our detection range in the vertical direction is limited
by diffraction to about 500–700 nm. Because the vesicles in this
study are typically smaller (mean diameter 80 nm), all molecules
in a vesicle can be detected. We note, however, that the applica-
tion of our technique to structures with size similar to or larger
than the detection range would require imaging with different
focal planes (z-stacks) to detect all molecules.

Number of Exposed PI3P Sites and Vesicle Surface Area Display
a Maturation Path. To study the distribution in PI3P content
and size of maturing vesicles, we imaged over 50 cells and ana-
lyzed 273 vesicles. Both vesicle diameters and number of ac-
cessible PI3P binding sites display a broad range of values (Fig.
2C). The diameter of vesicles with very few PI3P binding sites
may be slightly underestimated owing to an uneven distribution
of detected molecules. However, the measured mean vesicle
diameter (82 nm) lies within the range obtained from electron
microscopy studies on clathrin-mediated endocytosis (22).
We next examined the degree to which the observed variability

in size and PI3P content is random or subject to tight regulation.
By plotting the number of accessible PI3P binding sites against the
calculated surface area of 273 individual vesicles, we obtained
a scatter plot populated in a clearly defined region (Fig. 2D).
Vesicles with low to intermediate numbers of PI3P binding sites
are relatively tightly distributed in size, but vesicles with several
hundred binding sites show a significant increase in size and size
variation. Both small and large vesicles are found within the same
cell (Fig. 2D, red), suggesting that our aggregate distribution
represents a superresolution snapshot of dynamic processes oc-
curring in each cell. Because PI3P is produced on incoming vesi-
cles, which fuse during maturation, or on early endosomes, we
hypothesized that this population of vesicles represents a matura-
tion trajectory of PI3P production and vesicle fusion.
To validate our counting of PI3P binding sites in individual

vesicles, we combined superresolution with conventional fluo-
rescence microscopy (Fig. 3A and Fig. S3). In this way, three
independent parameters were obtained from each vesicle: their
subdiffraction limit size, the number of one type of molecule
(superresolution with mEos2), and the amount of a second
molecular species (conventional fluorescence with GFP). We
coexpressed our calibrated FYVE–mEos2 construct with FYVE–
GFP. Each vesicle now appears in both superresolution (red)
and conventional GFP (green) channels. The mEos2 counting
and the GFP intensity show a high correlation (Pearson’s cor-
relation coefficient, ρ = 0.91; Fig. 3B). This correlation validates
our use of FYVE–mEos2 as a PI3P reporter.

Characteristic PI3P Sites and Vesicle Size Are Conserved Between
Cells; Variation Is Due to Intrinsic and Extrinsic Noise. Stochastic
gene expression leads to variability within a cell (intrinsic noise)
as well as to phenotypic heterogeneity between cells (extrinsic
noise) (1). Logically, these sources of noise might also manifest
themselves on the level of small intracellular organelles. We
examined whether our observed vesicle population (Fig. 2D) is
caused by cell-to-cell variability or represents a trajectory of PI3P
production and vesicle fusion present in each cell. Because we
have verified that our fluorescent PI3P reporter is not significantly
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Fig. 2. Vesicles in the endocytic pathway show characteristic relationship be-
tween vesicle size and PI3P content. (A) A tandem repeat of the FYVE domain
of EEA1 fused to mEos2 serves as a specific probe to detect accessible PI3P
binding sites on endocytic/endosomal vesicles. mEos2 (red) localizes to distinct,
circular vesicles within a yeast cell (gray). (B) By applying our calibrated super-
resolution microscopy approach, the number of mEos2 molecules (N) bound to
PI3P on each vesicle is determined (x’s). The molecular distribution exhibits
a circular shape (two peaks in a 1D projection). The diameter of vesicles (D) is
determined by measuring the spatial spread of molecules. (C) Vesicles display
variability in PI3P content and size. Representative vesicles are shown displaying
the expected circular shape. The histogram of vesicle diameters exhibits a fitted
maximum at 82 nm. (D) PI3P content and vesicle surface area fall on a charac-
teristic curve. Vesicles with fewer than 100molecules display relatively tight size
regulation, whereas structures above this threshold are significantly larger.
Vesicles from each part of this characteristic distribution can be found within
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(black line) fitted to box-smoothed data with 95% confidence envelope.
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subject to intrinsic noise (Fig. 3B), our experimental setup pro-
vides the required accuracy. By analyzing multiple vesicles from
individual cells (Fig. 4A, only cells with six or more vesicles are
displayed), we observed that individual cells contain vesicles
from all regions of the population. The majority of the spread
in vesicle size and lipid content therefore seems to reflect a
regulated maturation trajectory of PI3P production and vesicle
fusion in the endocytic pathway. The scattering of vesicles from
individual cells around the trajectory, however, displays two
sources of noise: systematic deviations above or below the mean
path (e.g., red, blue and orange in Fig. 4A) and intrinsic scat-
tering within a cell around the path (e.g., green, yellow, and pink
in Fig. 4A). Because both variations are larger than the experi-
mental error, we conclude that intrinsic noise owing to variation
of accessible PI3P binding sites between individual vesicles within
a cell and extrinsic noise owing to variation between cells is
present in the endocytic pathway (Fig. 4B).

Landmark Proteins Associate with Distinct States of the Maturation
Trajectory. To correlate our observed PI3P-size trajectory with
the timeline of vesicle maturation, we performed two-color
colocalization experiments between our PI3P reporter (in the
superresolution channel) and landmark endocytic pathway pro-
teins labeled with GFP (in the conventional fluorescence chan-
nel) (Fig. 5A). We tagged three endocytic pathway proteins with
GFP: (i) clathrin, present from the initial stages of membrane
invagination and endocytic vesicle formation (18); (ii) the small
GTPase Vps21 (yeast homolog of Rab5), an interaction partner
of the PI3-kinase that associates with incoming vesicles and early
endosomes; and (iii) the GTPaseYpt7 (yeast homolog of Rab7),
found in late endosomes (for reviews on Rabs see refs. 16 and
36). Both GTPases are involved in tethering and fusion (15, 37)
and participate in different stages of endosomal maturation (11).
In each of the three sets of experiments, we counted PI3P

binding sites and measured the size of individual vesicles as well
as the amount of each GFP-tagged landmark protein. By plotting
those vesicles with significant GFP signal (Fig. 5B and Fig. S4),
we observed the same characteristic distribution of size and PI3P
content. These three landmark proteins denote three distinct

regimes in our observed distribution. Clathrin associates with
very low PI3P-content vesicles, whose size and morphology in-
dicate that these structures are early endocytic vesicles. In con-
trast, Vps21 colocalizes with vesicles containing hundreds of
PI3P molecules, but both clathrin- and Vps21-associated regimes
display tight regulation of vesicle size. Finally, Ypt7 associates
with vesicles of significantly larger size and containing the highest
numbers of PI3P binding sites. This trend is also clear in the
medians of each class and hand-drawn ellipses, which include
more that 80% of data points of each class (Fig. 5B, crosses and
shaded ellipses, respectively). In general, more small individual
vesicles are observed than large, Ypt7-associated endosomes.
Given that many individual vesicles fuse to form a larger endo-
some, this observation is consistent with the conservation of lipid
membrane along the maturation path.

Discussion
Quantifying the abundance and spatial distribution of bio-
molecules in cells provides fundamental insights into biological
processes such as compartmentalization, polarization, and sig-
naling. Here we take this approach one step further to study the
size and biomolecular composition of subcellular compartments
using calibrated superresolution microscopy. This technique
opens up new and exciting opportunities to quantitatively study
processes in intracellular organelles and complexes. The identity
of organelles is primarily defined by their morphology and bio-
molecular composition, and our method provides fundamental
characterization of these properties. From a large number of
such measurements, insights can be obtained into how this identity
is dynamically regulated along a path.

Challenges for Counting Single Molecules with Superresolution
Microscopy. Counting absolute molecule numbers remains chal-
lenging because of overcounting owing to blinking and under-
counting owing to a limited PAFP maturation efficiency. Several
recent studies made progress in quantifying single-molecule
superresolution microscopy data by correcting for dye blinking
(25–28). Other approaches calculated averaged spatial distri-
butions of an ensemble of signaling complexes (33, 38) or de-
termined high mEos2 molecule numbers using an average
number of blinking events (39). One persistent problem is the
strong environmental dependence of the photophysical param-
eters required for blink correction and the fraction of unobserved
fluorophores. To count absolute numbers of molecules over several
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culating the total fluorescence intensity. (B) Quantified conventional fluo-
rescence validates superresolution counting. FYVE–mEos2 and FYVE–GFP
constructs were expressed in the same cells. A colocalization image shows
transmitted light image (gray), mEos2 (red), and GFP (green). The number of
mEos2 molecules determined in the red superresolution channel and the
amount of GFP quantified by total fluorescence intensity on each vesicle is
tightly correlated (Pearson’s coefficient, ρ= 0.91).
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orders of magnitude in individual protein complexes, these two
effects must be quantified, as we have done here.
Experimental conditions such as environmental oxygen and

redox potential or the intensity of excitation and photo-switching
affect the fluorophore’s photophysical parameters (40). These
conditions may vary between cellular compartments and cell types.
The fraction of undetected PAFPs also depends on environ-
mental factors such as temperature, pH, and fixation conditions.
Systematic measurement of the sum of these effects by counting
fluorophores with known stoichiometry is critical for obtaining
absolute molecule numbers and associated uncertainties. For fu-
ture optimizations of PAFPs compatible with single-molecule
superresolution microscopy, it is important to enhance not only
their brightness and maturation rate but also photo-switching ca-
pability, low transition rates to dark states, and short dark times.

A Superresolution Snapshot of the Vesicle Maturation Trajectory: PI3P
Production and Vesicle Fusion Occur at Different Stages. The appli-
cation of calibrated superresolution microscopy to the yeast
endocytic pathway allowed us to count the number of accessible
PI3P binding sites, quantify their colocalization with endocytic or
endosomal proteins, and correlate these numbers with vesicle size.
The observed maturation trajectory of vesicles suggests an initial
phase of PI3P production on vesicles whose size is tightly regu-
lated, followed by a later phase in which fusion of these vesicles
occurs. Previously it has been shown that Vps21 mediates vesicle

tethering (37), which precedes fusion. We are able to resolve
tethered vesicles (e.g., in Fig. 5A, middle row and column); how-
ever, consistent with the notion that fusion is fast, such events are
very rarely observed. The PI3P content is highest in large, fused
structures, which we interpret to be early and late endosomes
based on their morphology and Vps21/Ypt7 association. Owing to
the increase in surface area in these larger structures, our findings
indicate that most PI3P production occurs before vesicles start
to fuse. As seen in Fig. 5A, most of the large Ypt7-associated
endosomes exhibit complex, irregular morphology, consistent with
EM studies in yeast that resolved the structure of endosomes and
multivesicular bodies (41). Owing to this complex morphology and
2D projection of the images, the calculated surface area of those
large structures may be slightly underestimated. However, this
underestimation does not affect our conclusion that most of the
PI3P is produced on individual vesicles before they fuse.
Because the endocytic pathway is conserved between yeast and

mammalian cells, our results can be viewed in a broader context.
It is well established that PI3P production is required for vesicle
fusion and maturation (7). In mammalian cells, the key proteins
in this process are EEA1 (homolog of yeast Fab1), which binds
to PI3P (34, 42) and is thought to recruit and to effect Rab5
(homolog of yeast Vps21) (10). Rab5 in turn tethers vesicles (16,
37) and interacts with the fusion complex CORVET (43) and
through EEA1 with SNARE (44). However, owing to the lack of
a direct measurement, it is still debated whether PI3P is pro-
duced on incoming vesicles, fused vesicles, or endosomes. Fur-
ther experiments will help to dissect maturation events following
Rab5 mediated fusion in more detail and study the role of other
proteins involved in these processes.

Dissecting Regulation and Noise with Multiple Parameters. Quanti-
fying multiple parameters of a dynamic process with many static
snapshots can illuminate both regulation and variability within
the pathway. For intracellular organelles, the most important
parameters are morphology/size and molecular composition.
Our method allows us to track these parameters and to gain
mechanistic insight into the overall pathway by dissecting dif-
ferent regimes in the measured parameter space. In addition, we
also obtain insights into intrinsic and extrinsic sources of noise by
comparing parameter distributions within and between cells.
In the case of our observed vesicle maturation trajectory, we

found that vesicles from individual cells cover the whole range of
the distribution, indicating a regulated process in each cell. The
scattering of vesicles from individual cells around the trajectory
is significantly above our experimental error and displays two
sources of noise: intrinsic noise owing to variation of accessible
PI3P binding sites between individual vesicles within a cell and
extrinsic noise owing to variation between cells. Certain endo-
cytic proteins involved in lipid modification and protein sorting
are expressed at very low levels [e.g., Fab1 (149 copies per cell)
or Vps27 (172 copies per cell) (45)], creating potentially large
stochastic variations between vesicles and endosomes (Fig. S5).
In contrast, the higher expression level of our PI3P reporter results
in a lower coefficient of variation (see also high correlation Fig.
3B) and thus less intrinsic noise than some other endocytic pro-
teins. By synthetically introducing noise in different nodes, future
experiments on modified endocytic pathways could reveal which
parts are sensitive to, suppress, or amplify this variability.
Quantitative superresolution microscopy also presents the

opportunity to study clustering or polarity in small intracellular
compartments (46). Endosomal proteins are likely to have
a complex spatial organization on vesicles that may be important
for various processes in membrane trafficking and sorting. We
believe that our calibrated superresolution microscopy approach
together with its ability for multiparameter quantification will
be useful for future mechanistic insight of dynamic processes
below the diffraction limit. In addition to the endocytic pathway,
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a multitude of other small intracellular organelles such as pro-
cessing bodies, peroxisomes, or centrosomes (47) present an ex-
citing opportunity for exploration with this approach.

Materials and Methods
Sample Preparation. Yeast strains (W303) (see Tables S1–S3) were grown at
30 °C overnight in synthetic media with glucose (SD), diluted 1:50 in SD, and
grown for 3–4 h to log phase in the dark. After immobilization on a Con
A-coated coverslip, cells were fixed for 30 min with 4% (vol/vol) formalde-
hyde (SI Materials and Methods gives details).

Superresolution Microscopy. Superresolution measurements were performed
on a custom-built microscope based on a Nikon Ti-E inverted microscope with
the Perfect Focus System. Photoactivation (405 nm laser, 1–160 μW corre-
sponding to a power density of roughly 0.06–10 W/cm2) and simultaneous
bright-field imaging in one frame was followed by nine frames with exci-
tation (561 nm, 17 mW corresponding to a power density of roughly 1 kW/cm2);
this cycle was repeated until all mEos2 molecules were imaged and bleached
(SI Materials and Methods and Fig. S3). Fluorescent intensity profiles of single
mEos2 molecules were fitted with Gaussians and drift corrected (SI Materials
and Methods and Fig. S1).

Calibration for Molecule Counting. To accurately calibrate our measurements
in cells under imaging conditions, we measured the dark-time histogram of
well-separated [PH]2-mEos2 molecules at the plasma membrane. Using this
histogram, we determined that 99% of the dark states of a single fluorophore

last less than 2.66 s (SI Materials and Methods and Fig. S1). The pair-correlation
function reveals that these bursts are spatially separated by less than 150 nm.
Therefore, all fluorescent bursts separated by less than 150 nm and 2.66 s were
combined (SI Materials and Methods and Fig. S1). For the labeling densities in
this study, combining fluorescent bursts in this way does not lead to under-
counting artifacts owing to overlap in time (Fig. S1B). To determine the frac-
tion of undetectable mEos2 molecules, counting histograms of the double and
triple mEos2 repeats were noise-subtracted and fitted by a binomial distri-
bution (SI Materials and Methods and Fig. S2).

Two-Color Colocalization with Superresolution Structures. GFP was images
after mEos2 to avoid potential crosstalk (SI Materials and Methods and Figs.
S3 and S4). Images were background-subtracted and corrected for uneven
illumination, and the total GFP intensity per vesicle was calculated (SI
Materials and Methods). Only vesicles with more than two FYVE–mEos2
molecules were analyzed (SI Materials and Methods). Vesicles with a signif-
icant GFP signal (above the 90% threshold, Fig. S4) are plotted in Fig. 5B.
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