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Many cells can sense and respond to time-varying stimuli, selectively
triggering changes in cell fate only in response to inputs of a
particular duration or frequency. A common motif in dynamically
controlled cells is a dual-timescale regulatory network: although long-
term fate decisions are ultimately controlled by a slow-timescale
switch (e.g., gene expression), input signals are first processed by a
fast-timescale signaling layer, which is hypothesized to filter what
dynamic information is efficiently relayed downstream. Directly
testing the design principles of how dual-timescale circuits control
dynamic sensing, however, has been challenging, because most
synthetic biology methods have focused solely on rewiring transcrip-
tional circuits, which operate at a single slow timescale. Here, we
report the development of a modular approach for flexibly engineer-
ing phosphorylation circuits using designed phospho-regulon motifs.
By then linking rapid phospho-feedback with slower downstream
transcription-based bistable switches, we can construct synthetic dual-
timescale circuits in yeast in which the triggering dynamics and the
end-state properties of the ON state can be selectively tuned. These
phospho-regulon tools thus open up the possibility to engineer cells
with customized dynamical control.
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Long-term cell fates can often be selectively triggered by specific
temporal patterns (dynamics) of stimulation (Fig. 1A). Relatively

few cellular systems that “decode” time-varying inputs have been
characterized in detail, but recurrent network motifs are beginning to
emerge (1, 2). One key feature that is often observed in such systems
is the interlinking of circuits that operate on distinct timescales (3–
14). In perhaps the best example of a biological “dynamic gate,” the
synaptic remodeling of neurons is mediated by two layers of regu-
lation (Fig. 1B): first, an upstream circuit of rapid but transient al-
losteric and posttranslational changes detects incoming stimuli and
filters for high-frequency pulses; second, the signal is transmitted to
downstream circuits regulated by slower processes (gene expression,
trafficking, and morphological changes), which ultimately can yield
stable alterations in receptor localization and synaptic function (4, 6).
This common motif suggests that a simple solution for achieving
tunable dynamic control systems is to link fast and slow subnetworks,
whereby the upstream fast system processes how the intrinsically slow
downstream switch receives and responds to external dynamic inputs.
To test this hypothesis, we engineered synthetic cellular circuits

based on linked fast (phosphorylation)- and slow (gene expression)-
timescale modules (Fig. 1C). We first developed a versatile method
for building fast-timescale signaling circuits in yeast using modular
phospho-regulons. We then linked engineered phospho-feedback
circuits with an intrinsically slow downstream transcription-based
bistable switch, and were thereby able to generate a dynamic cell
fate switch in yeast whose principal behaviors (input pulse length
sensitivity and output response amplitude) could be selectively
tuned by systematically altering the fast and slow regulatory layers.
To date, most engineered cellular circuits have been constructed

from gene expression components, taking advantage of the
modular nature of promoters (15–20). Significantly, however,
the dynamic properties of transcriptional circuits are in-
trinsically constrained to the slow timescale of gene expression.
In native regulatory networks, more rapid responses are often

mediated by faster posttranscriptional modifications, such as pro-
tein phosphorylation. Our ability to create novel phosphorylation-
based circuits, however, is far less developed. Successful examples
of rewiring kinase pathways have largely involved redirecting ki-
nases or phosphatases preferentially to one of several alternative
preexisting substrates via engineered recruitment interactions (19,
21, 22). To construct the kind of fast-timescale feedback circuits
observed in many cellular dynamic gates, we first needed to develop
a more flexible platform for phospho-engineering—one that links
the activity of a particular kinase to arbitrary targets in a manner
that predictably alters target activity. Phospho-regulated proteins
often contain bifunctional sequences [linear motif switches (23, 24)]
that are efficient phosphorylation substrates for the upstream ki-
nase as well as inducible ligands for a downstream effector domain.
Here, we used one such bifunctional sequence to generate a set of
synthetic modular phospho-regulation tags (phospho-regulons)
controlled by Fus3, the mitogen-activated protein kinase (MAPK)
of the yeast mating pathway.

Results
Phosphorylation-Regulated Interaction Modules for Fast-Timescale
Synthetic Circuits. To create a robust synthetic MAPK phospho-
regulon, we started with an existing substrate protein that already
contains the desired core regulatory behavior (MAPK-regulated
binding), and then minimized the protein to obtain a short modular
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sequence that can be readily fused to any target protein to achieve
phospho-regulation (Fig. 2A and Fig. S1). The yeast mating pathway
is one of the best-studied signal transduction networks in eukaryotes,
and our work capitalized on the current molecular understanding of
fast-timescale regulation by its associated MAP kinase, Fus3. The
transcription factor Tec1 is a Fus3 (MAPK) substrate that, when
phosphorylated, binds the WD40 domain of Cdc4 (an SCF ubiquitin
ligase complex adaptor protein) (25). To generate a minimal WD40
phospho-binding motif, we combined a short, 11-residue peptide
from Tec1 that, when phosphorylated, binds to the WD40 domain,
with a well-characterized Fus3 docking motif (from the MAPKK
Ste7) (26) to form a 49-residue phospho-regulon tag. In an in vitro
binding assay, we found that this phospho-interaction module indeed
only binds the Cdc4 WD40 domain when phosphorylated by the
MAPK Fus3 (Fig. 2B). Consistent with this model, mutation of key
phosphorylation sites in the synthetic module (Thr→Val) disrupted
the Fus3-induced interaction in this and other related phospho-
regulon constructs.
To confirm that the synthetic interaction tag mediated rapid,

phospho-mediated binding in vivo, we fused three tandem copies of
the synthetic phospho-regulon to a fluorescent reporter (mCerulean)
tagged with a plasma membrane targeting sequence (CAAX motif),
and fused two copies of the cognate Cdc4 WD40 domain to a cy-
toplasmic fluorescent reporter (tdTomato). Under basal conditions,
the tdTomato reporter protein is distributed throughout the cyto-
plasm. Once cells have been stimulated with α-factor (the yeast
mating pheromone that activates the Fus3 MAPK), Fus3 phos-
phorylates the motif, triggering rapid recruitment of the cytoplasmic
reporter to the plasma membrane in ∼5 min (Fig. 2C and Figs. S2A
and S3A; optimization described in SI Materials and Methods).
The modular phospho-regulon approach can be readily adapted

for alternative modes of posttranslational regulation: phospho-
regulated degradation and changes in nuclear/cytoplasmic distri-
bution. We assembled a modular phospho-degron (Fig. 2D and
Figs. S2B and S3 B and C) using an extended region of Tec1
[characterized by Bao et al. (25)] that (i) is phosphorylated by the
Fus3 MAPK, (ii) inducibly binds the endogenous yeast Cdc4 E3

ubiquitin ligase complex, and (iii) contains an additional poly-
lysine region that facilitates ubiquitinylation. Although the fusion of
this initial phospho-degron to a fluorescent reporter (tdTomato)
showed slow degradation kinetics, mutational optimization of the
Cdc4 binding region readily yielded an improved variant that rap-
idly degraded the reporter protein uponMAPK activation (t1/2 = 14
min) (SI Materials and Methods and Fig. S2B). Similarly, we con-
structed a localization control module by fusing the phospho-
degron to a nuclear anchor protein, which then released a
fluorescent reporter protein into the cytoplasm upon MAPK
stimulation (Figs. S2 and S3). These experiments illustrate the
flexibility of phospho-regulons for circuit engineering.
To create a synthetic fast-timescale positive-feedback loop, which

could alter the dynamics of a response, we used our original phos-
pho-interaction module to drive colocalization of the mating path-
way proteins Ste18 (tagged with the Fus3 phospho-regulon) with the
Ste50 SAM domain (linked to the Cdc4 WD40 phospho-binding
domain)—thereby reconstituting a potent synthetic activator of Fus3
MAPK [tethering of Ste18 and Ste50 SAM has been shown to
mediate formation of the active MAPK signaling complex (27)] (Fig.
2E). Positive phospho-feedback reshaped the mating pathway re-
sponse dynamics such that cells stimulated with pheromone displayed
significantly accelerated expression of a downstream transcriptional
reporter (pFus1-GFP) relative to cells containing either (i) no
phospho-feedback or (ii) a circuit in which phospho-threonine
residues in the recruitment module were mutated to valine. This
accelerated response was correlated with rapidly amplified Fus3
phosphorylation, assayed by Western blot (Fig. S4). Notably, the
synthetic phospho-regulated feedback loop did not lead to bistable
memory behavior (i.e., persistent activation after stimulus removal).
To engineer a fast-timescale negative-feedback loop, we used

the phospho-recruitment module to colocalize components of a
complex previously shown to inhibit mating pathway activation
[Fus3 and the N-terminal domain of Ste20 (27)]. In this case, we
observed the opposite change in pathway behavior—deceleration
of pheromone induced GFP-reporter expression (Fig. S5).

Combination of Phospho-Regulation and Transcriptional Regulation
to Form Dual-Timescale Switches. To construct a synthetic dual-
timescale circuit, we then linked our engineered phospho-circuits
to a slower timescale downstream switch. One of the most common
and well-studied classes of synthetic switch circuits is the bistable
transcriptional memory circuit—a regulatory switch that flips from
one stable state to another when perturbed by a transient stimulus
pulse of sufficient amplitude and duration. Bistability can be
achieved using cooperative positive feedback (28), and several
synthetic memory circuits have previously been constructed using
autoregulated transcription factors (15–18, 29). These gene ex-
pression switches are intrinsically slow and can take hours or more
of stimulation to trigger the transition from the low-expression to
high-expression steady state. To understand how changes in the
upstream kinase circuit could alter dynamic gating behavior, we
created a simple deterministic computational model of a dual-
timescale system composed of sequential phosphorylation and
transcriptional feedback loops (Fig. 3A; simulation details de-
scribed in SI Materials and Methods). Based on this model, a circuit
with an added fast positive-feedback loop was predicted to switch
ON in response to shorter stimulus pulses than a circuit with no
upstream feedback. In time course simulations, the addition of
positive phospho-feedback enhanced the amplitude of stimulus-
dependent kinase activation, which, in turn, accelerated the rate of
transcription factor synthesis, thereby decreasing the stimulus
duration required to cross the bistable circuit’s threshold for self-
sustaining activation. Conversely, addition of a negative phospho-
feedback loop was predicted to delay the circuit’s commitment to
switching ON (increase triggering time).

Experimentally Tuning the Trigger Time of a Dual-Timescale Bistable
Switch. We then experimentally examined the role of fast-timescale
feedback in dual-timescale switches, constructing sequential fast/slow-
feedback circuits (Fig. 3A) by linking synthetic phospho-feedback on
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the MAPK Fus3 (from Fig. 2E and Fig. S5) to a transcription-
based memory circuit. The transcriptional memory switch has the
following components: (i) a promoter activated by Fus3 (pFig2)
drives production of an artificial transcription factor (VP64-
LexA DNA binding domain), (ii) a promoter activated by the
transcription factor (LexA Operator-pGal) drives production
of a fluorescently tagged version of the transcription factor
(tdTomato-VP64-LexA DNA binding domain) creating a self-
perpetuating positive-feedback loop (Fig. S6; Movie S1 shows
the memory persistence of this switch across multiple cell divi-
sions). To measure the trigger time required for commitment to
memory formation, we induced the mating pathway (by adding

the peptide α-factor) for varied periods of time before quenching
stimulation (by adding Pronase, a mixture of proteases that degrades
α-factor) (Fig. 3B). After cells were cultured for an additional 3 h [to
allow time for memory consolidation (Fig. S6)—a process that re-
mains slow even if commitment occurs much faster], we then mea-
sured the concentration of fluorescently tagged transcription factor
in single cells by FACS (≥10,000). Cells that did not pass the
threshold for memory activation returned to basal tdTomato levels
after 3 h (due to dilution by cell division) (Fig. 3C). In agreement
with our simulations, yeast cells containing the additional negative
phospho-feedback module required a longer pulse to trigger mem-
ory formation (trigger times of 88 vs. 54 min). Cells containing
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positive phospho-feedback module, however, were sensitized to ex-
tremely short pulses of α-factor (trigger times of 7 vs. 54 min). Thus,
changes in upstream fast-timescale regulation can tune the memory
switch trigger time over a 10-fold range, whereas the end states of
the switch are unaltered (Fig. 3C).
The functional consequences of rewiring either fast or slow

layer are evident in phase-plane diagrams of transcription factor
concentration and activated kinase concentration (Fig. 3D and
Fig. S7). Comparison of simulated trajectories for dual-timescale
circuits with and without fast positive feedback shows that ad-
dition of upstream processing impacts the time evolution of the
system during the stimulus pulse—accelerating transcription
factor synthesis through enhanced kinase activation—without
altering the ON and OFF steady states that the system relaxes to.

Independent Tuning of Switch Dynamics and Steady-State Endpoints.
Having observed that feedback in the fast layer selectively tunes
the stimulus duration required to trigger the dual-timescale switch,
we wondered whether modifications in the slow layer could act as
an orthogonal dial, modulating a separate property of the memory
switch behavior. When we extended our computational analysis to
perturbations in the slow-feedback loop components, we found
that variation in the rate of transcription factor loss (degradation
plus dilution) alters the position of the switch’s end state (i.e., the
amplitude of the circuit’s memory response) while having rela-
tively little effect on the trigger time (Fig. S7). We experimentally
tested this prediction by destabilizing the autoregulated tran-
scription factor in our synthetic memory circuit using N-end rule
degrons. When cells containing different strength degrons [none;
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Gordley et al. PNAS | November 22, 2016 | vol. 113 | no. 47 | 13531

SY
ST

EM
S
BI
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1610973113/-/DCSupplemental/pnas.201610973SI.pdf?targetid=nameddest=SF7
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1610973113/-/DCSupplemental/pnas.201610973SI.pdf?targetid=nameddest=SF7
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1610973113/-/DCSupplemental/pnas.201610973SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1610973113/-/DCSupplemental/pnas.201610973SI.pdf?targetid=nameddest=STXT


weak, DegronE; or strong, DegronR (30)] were stimulated with a
prolonged (3-h) pulse of α-factor, a 54-fold range of ON states was
observed. (Fig. 4A and Fig. S8).
Thus, our theoretical and experimental analysis suggested that

dual-timescale switches were highly modular, such that rewiring of
fast and slow regulatory layers could selectively and independently
tune switch dynamic sensitivity (to pulse length) and response
(amplitude of activated state). In principle, this feature would en-
hance the plasticity of native cellular dynamic gates and facilitate
the design of diverse synthetic memory circuits. To experimentally
test this possibility, we constructed a small combinatorial library of
dual-timescale switches, combining fast-timescale phospho-feedback
loops with downstream transcriptional feedback mediated by tran-
scription factors with high, medium, or low stability (destabilization
performed with N-end rule degrons). These synthetic circuits
exhibited a broad spectrum of trigger times (7–125 min) and ON
state amplitudes (84-fold range). As predicted, changes in phospho-
feedback selectively modulated duration sensitivity, whereas varia-
tions transcription factor stability predominantly tuned the memory
response (Fig. 4B and Fig. S8). Notably, however, we did observe a
moderate increase in dynamic sensitivity when circuits contained the
most stable transcription factor. In this case, it is possible that sus-
tained positive feedback may effectively extend the duration of each
input pulse.
Because changes in the strength or sign of phospho-feedback

have little impact on the steady state (response amplitude) of the
transcription factor-mediated memory, these fast-feedback cir-
cuits function analogously to enzymes in that they change the
dynamics of switch flipping but do not alter the end states of the
switch (Fig. 4C). Thus, the functional modularity of the dual-
timescale regulatory switch enables cells to tailor their decision
making to the environment (through changes in fast-timescale
regulation) without altering, compromising, or destabilizing their
long-term response (encoded by the slower downstream switch).

Discussion
Although it is increasingly clear that the interplay between reg-
ulatory mechanisms that operate on different timescales plays a
central role in the dynamical control of cell fate decisions, the
vast majority of synthetic circuits published to date are based on
transcriptional regulation. Thus, our ability to understand and
engineer dynamical response control is relatively primitive. The
development of synthetic phospho-regulons—modular peptide
tags built from linear motifs, which create customized phospho-
dependent, protein–protein interactions (Fig. 2)—now makes it
possible to reroute kinase signaling to directly modulate protein in-
teraction, localization, and stability. These phospho-regulons, as
demonstrated here, provide us with synthetic tools for flexibly
rewiring fast-timescale cell control circuits. Using phospho-regulons,
we show that a simple combination of fast and slow regulation (se-
quential phosphorylation-based and transcription-based feedback
loops) can give rise to tunable cellular switches that are activated by
custom-tuned time-varying inputs (dynamic gates). Because time-
scale separation permits selective control of switch sensitivity and
memory response amplitude (Fig. 4), we anticipate that dual-timescale
dynamic gates will be used to build switches that record the dynamics
(e.g., duration or frequency) of cellular events. Dynamic gate circuits
could also be used to precisely control engineered cells using
information-rich modalities [such as pulse sequences (31)] or
“sender” cells that encode information in time-varying outputs (32).
These tools should help us to better understand the fundamental
ways in which cells can encode and decode temporal information.

Materials and Methods
Strain and Plasmid Construction. Details for all assembly protocols, plasmids,
and strains (including the transcriptional memory module) are described in SI
Materials and Methods and Table S1.

GST Pull-Down Binding Experiments. Standard methods were used for ex-
pression, purification, and in vitro phosphorylation of the phospho-regulon
(details in SI Materials and Methods). Pull-down experiments (Fig. 2B) were
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conducted by coincubating GSH-agarose resin harboring ∼250 μg of phos-
phorylated bifunctional motifs with 10–50 μg of the appropriate reader
domain. After extensive washing with binding buffer, proteins were eluted
from the resin by boiling in SDS/PAGE buffer. Samples were run on an SDS/
PAGE gel, andWestern blotting was used to detect binding of reader domains.
For detection of WD40 binding, mouse anti–His-tag (Cell Signaling; 2366) was
used. With primary antibodies, an IRDye 800CW-conjugated IgG (Li-Cor) was
used, and blots were imaged on an Odyssey infrared imager (Li-Cor).

Microscopy and Data Analysis. To assay the kinetics of phospho-recruitment of
tdTomato to the plasma membrane (Fig. 2D), strains were grown overnight
in synthetic complete medium and diluted 1:100 in the morning, and then
grown 3–4 h before beginning microscopy in Con A-coated 384-well plates.
RFP and CFP epifluorescent images were collected once per minute for
23 min, with α-factor (1 μM final concentration) added after the third minute.
Cells were identified by thresholding both fluorescent channels, and mem-
brane translocation of cytoplasmic WD40-tdTomato was computed at each
time point as the correlation between the measured intracellular distribu-
tions of (phospho-regulon)-mCerulean-CAAX and WD40-tdTomato. Addi-
tional details for the microscopy setup and analysis described in SI Materials
and Methods.

Flow Cytometry. Full protocols for the flow cytometry assays and analysis are
described in SI Materials and Methods. Briefly, for α-factor experiments,
triplicate 500-μL yeast cultures in log phase were induced for variable pe-
riods of time [1 μM α-factor (Zymo Research), removed by adding 0.2 μg/mL
Pronase (Roche)], with aliquots arrested with cycloheximide (allowing time
for fluorophore maturation) before analysis with a BD LSR-II flow cytometer.
Analysis of flow cytometry data were performed using FlowJo (Tree Star).
The fluorescence of each cell was normalized to cell volume (n.f.) in the
manner described by Stewart-Ornstein et al. (33).

Quantitative Modeling. Simulations were performed with the free software
package GNU Octave. Computational model equations are described in SI
Materials and Methods.
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