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In Brief

Timing is critical in biological regulation.

In many cellular processes, biochemical

networks can measure the duration of

signaling inputs to coordinate the relative

timing of cellular responses. To define

biochemical circuits capable of this

temporal filtering, we comprehensively

searched the space of three-node

biochemical networks. We identified five

classes of core network motifs capable of

temporal filtering with distinct functional

properties and mechanisms. These core

network motifs provide insight into how

cells can interpret dynamic information

and temporally coordinate events.
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SUMMARY

Many cellular responses for which timing is critical
display temporal filtering—the ability to suppress
response until stimulated for longer than a givenmin-
imal time. To identify biochemical circuits capable of
kinetic filtering, we comprehensively searched the
space of three-node enzymatic networks. We define
a metric of ‘‘temporal ultrasensitivity,’’ the steepness
of activation as a function of stimulus duration. We
identified five classes of core networkmotifs capable
of temporal filtering, each with distinct functional
properties such as rejecting high-frequency noise,
committing to response (bistability), and distinguish-
ing between long stimuli. Combinations of the two
most robust motifs, double inhibition (DI) and posi-
tive feedback with AND logic (PFAND), underlie
several natural timer circuits involved in processes
such as cell cycle transitions, T cell activation, and
departure from the pluripotent state. The biochem-
ical network motifs described in this study form a
basis for understanding common ways cells make
dynamic decisions.

INTRODUCTION

Timing is critical in biological regulation. How do cells tell time

and measure the duration of events? In many processes, cells

display temporal filtering or temporal thresholding—the ability

to measure the duration of time that they experience a given

input and to only respond after a given threshold duration of

stimulation (Figure 1A). Closely related behavior has also been

referred to as kinetic proofreading (Hopfield, 1974) or persis-

tence detection (Mangan and Alon, 2003). Temporal filtering is

important for several types of physiological behaviors. Signaling

networks downstream of receptors must filter noisy, transient

environmental fluctuations to distinguish them from real, more

sustained signals (Hopfield, 1974). Kinetic filters can absorb

and dissipate these transient inputs. Measuring stimulation

time also allows cells to trigger a response to an initial cue only
Cell System
after a specific delay, which can be critical for coordinating the

relative timing of events, especially in complex, sequential pro-

cesses such as the cell cycle or development. Finally, there is

increasing appreciation that biological information can be

encoded dynamically, e.g., in features such as input duration

or frequency (Batchelor et al., 2011; Locke et al., 2011; Purvis

and Lahav, 2013; S€uel et al., 2007), and cellular circuits that

can measure duration of stimulation undoubtedly play a key

role in interpreting and decoding this kind of more complex tem-

poral information.

How can biochemical circuits function as kinetic filters? There

have been few studies that systematically explore and compare

which signaling circuit architectures can kinetically filter stimuli

and measure time. Although some circuits that can serve as

kinetic filters have been analyzed, for many biological examples,

the precise molecular circuitry or mechanism responsible for the

measurement of stimulus time is not known. Some specific

classes of circuits have been noted to be able to serve as kinetic

filters. These include extended multistep cascades (Hopfield,

1974; Samoilov et al., 2002) as well as coherent feed forward

loops that have both long (multistep) and short branches of

transmission that are simultaneously required for output (Man-

gan and Alon, 2003; Murphy et al., 2002). In transcriptional net-

works, positive feedback has also been proposed to play a

role in noise suppression (Hornung and Barkai, 2008). But are

these the only solutions for effective kinetic filtering? If there

are more families of solutions, how do they compare with one

another in terms of efficiency and various functional trade-

offs? As we begin to explore how the cell coordinates and inter-

prets complex dynamic information, it will be important to have a

roadmap to help identify and classify the general types of molec-

ular circuits that will emerge.

Coarse-grained network enumeration offers a computational

approach to identify classes of biochemical network architec-

tures that can achieve a given target function (Chau et al.,

2012; Lim et al., 2013; Ma et al., 2006, 2009; Adler et al.,

2017; Schaerli et al., 2014). Comprehensive, unbiased enumer-

ation of a space of simple circuits allows identification of core

solutions and evolutionary starting points for more complex

networks. A set of core solutions forms the basis for under-

standing and cataloging natural timing circuits as well as

providing blueprints for designer synthetic circuits that can

measure time.
s 9, 297–308, September 25, 2019 Published by Elsevier Inc. 297
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Figure 1. Enumeration of 1-, 2-, and 3-Node Networks Finds 25 Minimal Kinetic Filtering Circuits That Distinguish between Transient and

Sustained Inputs

(A) Kinetic filtering circuits respond to sustained but not transient stimuli, allowing cells to perform time-sensitive functions.

(B) Temporal ultrasensitivity score quantifies kinetic filtering by measuring the steepness of activation over stimulus time, defined by taking the ratio of input

duration required for 10% activation to input duration required for 90% activation. Trigger time, the duration of input yielding 50% activation, measures the

duration of stimulus necessary to trigger a response.

(C) To identify kinetic filtering architectures, temporal ultrasensitivity score and trigger timeweremeasured over an enumerated space of 68,705 circuit topologies

and 10,000 sampled parameter sets per topology testing with 36 specific input pulse durations between 0.25 and 50,000 s. Parameter sets were considered to

show kinetic filtering if the temporal ultrasensitivity scoreR0.5 and trigger timeR1 s. A topology’s robustness is defined as the fraction of its sampled parameter

sets that show kinetic filtering. See Figure S1 for details on simulating enzymatic circuits with OR and AND nodes.

(D) Number of topologies, kinetic filters with robustness ofR0.001, and minimal kinetic filters in 1-, 2-, and 3-node networks. Minimal kinetic filtering topologies

are topologies with robustness of R0.001 where removal of any link decreases robustness below 0.001 (Figure S2D). Two 2-node minimal kinetic filters are

topologically identical to 1-nodeminimal kinetic filters with regulatory node B taking the place of the basal regulator. Circuits with robustnessR0.01 are indicated

in bold.
Here, we apply this approach to search the full space of all

possible 1-, 2-, and 3-node enzymatic networks and identify

the classes of network architectures that can robustly achieve

kinetic filtering. To identify kinetic filters, we defined a new

metric—temporal ultrasensitivity—to measure the steepness

with which activation of a system occurs as a function of
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increasing stimulus duration. As the name implies, temporal ul-

trasensitivity is an analog of concentration ultrasensitivity—the

measure of the steepness of a system’s dose response (Goldb-

eter and Koshland, 1981; Altszyler et al., 2017). In natural cellular

processes, such as in cell cycle transitions or differentiation, the

features of temporal ultrasensitivity and delayed trigger time



contribute to the robustness of signaling responses (Yang and

Ferrell, 2013; Trunnell et al., 2011; Wang et al., 2009). Here, we

find five classes of simple networkmotifs that can achieve kinetic

filtering, including the previously characterized coherent feedfor-

ward loop (Mangan and Alon, 2003; Mangan et al., 2003). Two of

these motifs can be optimized to yield kinetic filters with both

sharp temporal ultrasensitivity and long trigger time (duration

of input required for half-maximal response). In contrast, the

other motifs identified can robustly achieve high temporal ultra-

sensitivity only at a lower range of trigger times. We identify key

mechanistic properties that allow for longer trigger times while

retaining sharp activation dynamics.

These findings and the trade-offs associated with each class

of motif suggest particular functional roles of each subtype.

Convergent motifs among natural kinetic filters responsible for

cell cycle transition circuits and T cell activation among other

functions is a combination of the twomost robust classes uncov-

ered in our search, which are predicted to combine both long,

tunable trigger times with committed, temporally ultrasensitive

switching.We also predict other types of combined circuit motifs

that would have particular kinetic-filtering properties.

Our understanding of how cells respond to the complex dy-

namic information they receive and how they control their own

responses over time, is currently relatively primitive. The design

principles of kinetic-filtering circuits explored in this study may

provide a roadmap for uncovering such temporal regulatory

mechanisms.

RESULTS

Defining Kinetic Filtering: Temporal Ultrasensitivity and
Trigger Time
We use two parameters to quantitatively define a kinetic filter

(Figure 1B). First, trigger time is the input duration required to

achieve half-maximal response; second, temporal ultrasensitiv-

ity is the steepness of the response versus input duration curve.

Analogous to concentration-based ultrasensitivity (Goldbeter

and Koshland, 1981), temporal ultrasensitivity quantifies the

sharpness of a signaling network’s kinetic-filtering thresholding

behavior, implying a steep temporal dose-response curve where

input stimulation with durations shorter than the trigger time

result in minimal or no activation of the network, and inputs

longer than the trigger time result in maximal activation. Net-

works that perform as kinetic filters can thus be defined as those

that show temporal ultrasensitivity or trigger times above a

minimum cutoff value. Because temporal ultrasensitivity is sen-

sitive to left-right translations, we consider all circuits with tem-

poral ultrasensitivity exceeding the cutoff value to be equally

temporally ultrasensitive.

Circuit Enumeration and Analysis of Robust Kinetic
Filtering
To identify the simplest kinetic-filtering circuits, we enumerated

the space of 1-, 2-, and 3-node enzymatic circuits, as described

previously (Ma et al., 2009) and measured each topology’s tem-

poral ultrasensitivity and trigger time under multiple parameter

sets (Figure 1C). Here, we focused on enzymatic nodes, where

each node is modeled with standard Michaelis-Menten parame-

ters. Each node is at a fixed total concentration partitioned into
active and inactive states. A regulatory link between nodes indi-

cates that the active state of the upstream node catalyzes the

conversion of the downstream node between its active and inac-

tive state (Figure S1).

In this model, nodes that integrate two regulatory inputs

exhibit ‘‘AND’’ or ‘‘OR’’ logic. Here, we do not define these as ab-

solute Boolean operators but rather use this nomenclature to

describewhether the effects of two different upstream regulatory

links are either multiplicative (‘‘AND’’) or additive (‘‘OR’’) (Fig-

ure S1). In an enzymatic framework, AND logic can be imple-

mented as, for example, activation of a kinase requiring

phosphorylation by two other kinases. Both logics are sampled

in this enumeration because prior work has shown that some

key kinetic filters require specific integrating node logic (Mangan

and Alon, 2003). These classes of nodes only describe two

extreme models of two-input integration where both inputs are

absolutely needed or both equally activating but many interme-

diate behaviors are also possible, such as integrating nodes in

which the weights of activation by each link are different (one

input link is the weak activator; the other is strong). Individual no-

des may also have basal activation or inactivation, independent

of regulatory links between nodes.

Altogether, we search a space of 68,705 possible network

architectures and quantify temporal ultrasensitivity and trigger

time for each architecture. We measure these behaviors by

tracking maximal output at any time during the simulation since

we alsowanted to be able to capture networks thatmay require a

substantial delay after the stimulus pulse to develop its full

output. For all simulated networks, we assume that concentra-

tions of individual enzymatic nodes operate in regimens where

stochastic effects are minimal.

To capture only the kinetic filters with very strong all-or-none

response to input duration, we applied a high-stringency cutoff

for temporal ultrasensitivity satisfied by <1% of simulated cir-

cuits (Figure S2A). Relaxing the cutoff for temporal ultrasensitiv-

ity from 0.5 to 0.4 yielded similar results for the types of motifs

observed. Additionally, we required the circuits to display a min-

imum trigger time of 1 s (compared to tested input durations of

up to 50,000s) to exclude circuits with trivially short trigger times

(Figure S2B), as a single-node circuit without feedback can

exhibit sufficiently steep temporal dose response when the

requirement on trigger time is relaxed as long as the kinetics of

input activation are sufficiently slow. These cutoffs yield circuits

with steep dynamic activation thresholds but with a range of

trigger times. We then quantified the robustness of each topol-

ogy’s kinetic filtering by measuring the fraction of a topology’s

tested parameter sets that satisfy the performance cutoffs (von

Dassow et al., 2000; Hornung and Barkai, 2008; Ma et al.,

2009). A higher robustness implies that the topology’s perfor-

mance is more robust to changes in parameter values. High-

robustness circuits are thought to represent the most likely

solutions to emerge from a random evolutionary process (Lim

et al., 2013).

We explored the network space using a two-phase search

strategy. First, we searched the network space with a low-strin-

gency robustness cutoff, where only very low-robustness net-

works were eliminated, in order to cast a wide net to find all

minimal network motifs that can perform kinetic filtering. We

can search this set of architectures for clusters of core kinetic
Cell Systems 9, 297–308, September 25, 2019 299



filtering network motifs. In the second phase, we searched for

optimal kinetic filters, which are likely to be more complex net-

works, by applying a much higher robustness cutoff. We could

then identify whether particular kinetic filtering motifs identified

in the first search were enriched within this more selective set

of network architectures.

Over 25% of all the enumerated topologies satisfied the

low-stringency robustness cutoff, but only 83 topologies met

the high-robustness cutoff (Figure S2C). We first describe

phenotypic clustering of the large set of topologies and define

the main classes of minimal kinetic filtering motifs and then

explore motif enrichment in the smaller, higher-performing set

of topologies.

Low-Stringency Search and Phenotypic Clustering
Identifies Five Classes of Kinetic Filtering Networks
Of the 17,469 topologies that passed the low-stringency robust-

ness cutoff, many are likely to be redundant—closely related net-

works that contain the same core motif that executes kinetic

filtering. To reduce this large set of topologies to a minimal

core set of non-redundant architectures, we systematically

tested the effect of link pruning on robustness (Chau et al.,

2012) (Figure S2D). We considered a minimal kinetic filtering ar-

chitecture to be one in which removal of any single link in the

network resulted in a drop in robustness below the 0.001 cutoff.

After this pruning procedure, 25 topologies were classified as

minimal kinetic filtering architectures (Figure 1D). Each of the

17,469 kinetic filters in the low-stringency robustness set con-

tains at least one of these 25 minimal kinetic filters as a core

substructure, and the most robust kinetic filters often contain

multiple minimal architectures. The minimal architectures thus

form a basis set for analysis and classification of kinetic filters.

In the enumerative network search, we focus on the temporal

ultrasensitivity score to define minimal motifs that function as ki-

netic filters. To investigate whether the minimal topologies could

be clustered by more specific functional behaviors, we evaluate

six additional metrics (Figure 2A). We consider two metrics that

are independent of the kinetic properties of the circuit: (1) trigger

time, the input pulse duration required to achieve 50% maximal

activation in the temporal dose response, as described in Fig-

ure 1B and (2) whether the network exhibited long-termmemory,

defined as final output concentration divided by maximum

output concentration, for a fixed-input pulse duration. We also

consider four metrics, dependent on circuit kinetics, which

describe the dynamics of the circuit on and off transition for a

given input pulse duration. These dynamic metrics include (3)

time for turning the circuit on (the time required for output to

reach 50% maximum amplitude after application of input), (4)

steepness of the circuit turning on (time required for output to

reach 10% maximum amplitude divided by time required to

reach 90% amplitude), (5) time to turn the circuit off (time

required for output to decrease to 50% maximum amplitude af-

ter the input was turned off), and (6) steepness of the circuit

turning off (time required for output to decrease to 10%

maximum amplitude after the input was turned off divided by

time required to reach 90% of maximum amplitude after the

input was turned off). We measured these ‘‘phenotypic’’ metrics

for each parameter set of all the minimal topologies that were

above our kinetic filteringmetric cutoffs, a total of 2,896 topology
300 Cell Systems 9, 297–308, September 25, 2019
and parameter combinations. Metrics 2–6 were measured for a

single input pulse of a 50,000 s duration.

Principal component analysis was performed on these pheno-

typic metrics for the set of minimal kinetic filtering topologies

(Figure S3). Figure 2B presents each minimal topology as a

sphere in principal component space with center at the mean

principal component value across the topology’s kinetic filtering

parameter sets and radius reflecting the amount of phenotypic

variation within that topology.

The minimal kinetic filters fall into five functional clusters (Fig-

ure 2C). Principal component 1, consisting mainly of the long-

term memory metric, divides the minimal kinetic filters into two

groups, one with long-term memory and one without. The cir-

cuits with long-term memory are irreversible and bistable and

are further divided by principal component 2 into two subtypes:

positive feedback circuits with OR logic (PFBOR) and a class that

we refer to as ‘‘bistable inverters’’ (BIs).

Among the circuits without long-term memory, principal

component 3 distinguishes between a class of kinetic filters that

turn off slowly and gradually, requiring a long refractory

period—‘‘positive feedback circuits with AND logic’’ (PFBAND)—

from kinetic filters that turn off quickly and steeply and are thus

considered the most reversible. Principal component 2 further di-

vides the reversible circuits into two subtypes, ‘‘double inhibition’’

(DI) circuits and ‘‘coherent feedforward loops with AND

logic’’ (CFFL).

Mechanisms of the Five Core Kinetic Filtering Motifs
How does each of these five classes of core motifs achieve

kinetic filtering behavior? Here, we describe in detail the activa-

tion trajectories for each of these core classes, using ideal

parameter sets that display kinetic filtering, and summarize their

basic mechanisms. Parameter constraints observed for the four

most robust classes are summarized in Figure S4.

Coherent feedforward loops (CFFL) have been previously

identified as being capable of kinetic filtering (Mangan and

Alon, 2003). These topologies use a fast arm and slow arm

mechanism for kinetic filtering, where the output node shows

AND logic and is only activated if it receives simultaneous signals

from both the fast arm (a measure for whether the input is still

present) and the slow arm (a measure of whether input was

also on some time ago). A representative coherent feedforward

loop time course (Figure 3A) shows that output node C is only

activated when both active A and active B are above a threshold

concentration; thus, trigger time is largely determined by the time

required to transmit the signal through the slower arm of the

network or the difference between the slow and fast arms. Short

inputs are filtered because they do not last long enough to allow

both the long and short arm of the network to be simultaneously

activating the terminal AND node (node C). CFFL circuits are

reversible after removal of the input and turn off sharply. They

can, however, display a moderate lag in initiating shutoff, which

is dependent on how long the pool of active node A remains after

removal of the input.

Bistable memory circuits, such as the ‘‘positive feedback OR

circuit (PFBOR),’’ can also achieve kinetic filtering. These cir-

cuits simply require a given time of input stimulation to pass

the tipping point or separatrix, resulting in switching from the

OFF state to the ON state (Figure 3B). The PFBOR motif
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Figure 2. Minimal Kinetic Filters of 1, 2, and 3 Nodes Phenotypically Cluster into Five Groups

(A) Metrics used to cluster minimal kinetic filters by phenotypic features. For metrics 2–5, a single input pulse of duration 50,000 s was applied. Measurements of

ON dynamics are relative to input ON time, and measurements of OFF dynamics are relative to input OFF time. OFF dynamics were not measured for circuits

where max output = final output. Phenotypic metrics were measured for all parameter sets of minimal kinetic filters with temporal ultrasensitivityR0.5 and trigger

time R1 s (total of 2,896 parameter sets distributed across 25 topologies in Figure 1D).

(B) Location of minimal kinetic filters in 3D space of the first 3 principal components of 6 phenotypic metrics. See Figure S3 for singular values and composition of

each principal component. Each sphere is centered at the mean principal component value observed over all kinetic filtering parameter sets of each minimal

kinetic filtering architecture. Sphere size is proportional to the radius capturing 60% of the observed phenotypes.

(C) Minimal kinetic filters cluster into 5 phenotypic groups that each share structural features. Archetypal topologies (right column) are the simplest topology in

each phenotypic group. Circuit links where kinetic filtering requires Michaelis-Menten kinetics to be in the linear or saturated regimen are indicated in blue and

orange, respectively.
requires only a single node to achieve a bistable circuit.

Here, activation of the OR node (node A) by input results in

positive feedback stimulation to the node, which, once at

sufficiently high levels to counter the basal inactivating activity,

can self-sustain activation of the OR node even in the absence

of input. Short inputs are filtered because they leave the level

of activated node A below the threshold required for lock-

ing ON.

Another kinetic filtering motif that results in long-term memory

is the BI class (Figure 3C). This highly unusual class of circuits

exhibits behavior where the output only switches ON after the

input has been halted. To serve as a kinetic filter, the A and B

nodes begin in activated states. The output node (node C) is

thus initially off because node A represses C. Upon input

stimulation, the negative feedback relationship between B and
A nodes initiates oscillations in the activity of both A and B, but

if the stimulation is long enough, then B becomes completely

deactivated. In the absence of active B, when input is halted,

the activity of node A falls to zero. Because node A was the

only deactivator of the output node C, output will now turn on.

In short, this type of kinetic filter requires a minimal input

stimulation duration to ‘‘prime’’ the system and eliminate active

B (Figure S6). This priming time defines the minimal trigger

time of the kinetic filter. The priming period can be followed by

a holding time of variable length as long as the input is sustained,

but immediately after the input is switched off, the output will turn

ON irreversibly. This highly unusual motif has not been, to our

knowledge, characterized in known examples of kinetic filters,

but it is possible that this sort of two-phase switch may be useful

for particular biological behaviors.
Cell Systems 9, 297–308, September 25, 2019 301
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Positive feedback loop AND (PFBAND) circuits are another sim-

ple class of motifs capable of kinetic filtering (Figure 3D). In this

case, the integrating node (node A) must be simultaneously stim-

ulated by the input and positive feedback in order for the system

to strongly activate the output. Initial input can lead to low levels

of the activation of A, if the basal deactivators of A are weak (here

an ‘‘AND’’ gate is not an absolute Boolean gate, but one in which

the integration of two activating stimuli is multiplicative rather

than additive). Nonetheless, this buildup of initial amounts of

activating A can be very slow and tuned by the strength of the

basal opposing activity. If the input is on long enough to build

up enough active A to trigger positive feedback, then A will

turn on synergistically because of dual AND activation. In this

case, the system does not formally display memory after input

is removed since it does turn off eventually. However, most pa-

rameters that lead to kinetic filtering also lead to an extremely

slow inactivation of the system. Here, the biggest difference be-

tween the PFBAND and PFBOR circuits is that the ANDmotif has a

much stronger dependence on positive feedback in order to in-

crease the level of active A. It is important to remember that our

coarse-grained search considered only two types of integrating

node behaviors, and it is certainly possible that related positive

feedback circuits could exist, in which the key integrating node
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has intermediate behaviors such as an OR gate where the

weights of activation aremuch stronger for the positive feedback

stimulation compared to the direct input stimulation. In this case,

one would expect to obtain a kinetic filter that was similar to the

PFBANDmotif, in that it would require a long period of direct input

stimulation to initiate buildup of active A but also similar to

PFBOR, in that it could eventually lock on in a fully bistable

manner.

The final major class of minimal kinetic filters is the DI motif

(Figure 3E). Networks in this class share a cascade with two suc-

cessive inhibitory regulatory relationships. The central node

(here, B) starts with high activity and acts as an inhibitor of sys-

tem output (node C). Input stimulation inhibits the inhibitor to

switch on the system. DI motifs can act as kinetic filters when

the central inhibitor node (here, node B) acts as a buffer to

absorb system input. Although input might immediately

decrease node B activity, this does not register as a change in

C node activity until after a longer duration of stimulation (trigger

time) when the level of B has dropped very low. Trigger time is

determined by the overall rate of decrease in B node activity,

which is dependent not only on input but is also opposed by

the basal activation of B; higher basal activation can yield longer

trigger times. DI motifs are reversible: after the removal of input,



the system rapidly returns to its initial steady state. The DI motif

can be arranged as a sequential element between input and

output nodes as described above but can also be found in a DI

feedback loop, as long as a terminal element of the DI motif

has a positive regulatory relationship with the output node.

The Most Robust Kinetic Filtering Networks Are
Enriched for DI and PFBAND Motifs
To identify which of the five core motifs can give rise to the most

robust kinetic filtering networks, we imposed a high-stringency

robustness cutoff of 0.08 on the �70,000 sampled topologies

(Figure S5A). All 83 circuits in the high-robustness set contained

DI and/or PFBAND motifs but none of the other three core archi-

tectures (Figure S5B), although minimal versions of DI and/or

PFBAND motifs are not robust enough to meet this cutoff. Of

the 83 highly robust kinetic filters, 25 have only PFBAND motifs,

9 have only DI motifs, and 49 have both PFBAND and DI motifs:

combining DI and PFBAND in the same circuit increases robust-

ness. The distributions of robustness of architectures containing

each of the five core motifs (Figure 3) show that circuits contain-

ing DI and PFBANDmotifs achievemuch higher degrees of robust

kinetic filtering than circuits containing CFFL and PFBOR motifs,

and circuits containing BI motifs are the least robust. The strong

enrichment for both DI and PFBAND motifs in the most robust ki-

netic filtering architectures prompted us to explore why these

motifs may act as better kinetic filters than other related motifs.

Why DI Cascades Are Better Kinetic Filters than Double
Activation Cascades
The more robust DI motif and the less robust CFFL motif are

structurally analogous—the slow arm of the CFFL motif, which

plays a major role in trigger time, is a double activation cascade,

in contrast to the DI motif. We examined the trigger time distribu-

tions of all DI parameter sets above our functional cutoffs and

found that they display trigger times ranging from 1 to >10,000

s. Under the same range of sampled parameters, CFFL circuits

are limited to trigger times under 100 s (Figure 4A). When we

examine the trigger times and temporal ultrasensitivity found

with 10,000 random parameter sets imposed on archetypical

DI or CFFL architectures, we find that DI circuits can occupy

the quadrant with both high trigger time and high temporal ultra-

sensitivity (Figure 4B). In contrast, the CFFL circuits appear to

have constraints that lead to a trade-off between temporal ultra-

sensitivity and trigger time in the parameter sets that lead to ki-

netic filtering (Figure S7).

These differences between the behavior of DI andCFFL kinetic

filters likely result from intrinsic differences between turning on

an output by activating an activator versus inhibiting an inhibitor.

To illustrate this point, we directly contrast a DI circuit with a dou-

ble activation circuit modeled with identical parameters—a dou-

ble activation circuit is simply a coherent feedforward loop with

the short arm removed. In Figure 4C, we solve for the steady-

state concentration of the active output node (node C) as a func-

tion of the fraction of the active regulator node (node B). In both

cases, output is initially low prior to input and increases the

longer input is applied. For DI circuits, the shape of the steady-

state output curve dictates that output remains low for a wide

range of node B concentration; only after the amount of active

B has been driven below a threshold does the fraction of the
active output (node C) begin to rapidly increase. Thus, for DI

circuits, trigger time can be tuned to be very long, with minimal

activation before reaching the trigger time. In contrast, for double

activation circuits, output increases substantially with even a

small initial increase in node B. Trigger time is thus limited by

the shape of the output activation curve being steepest at low

concentrations of node B, the early phase of the stimulation tra-

jectory. However, activation cascades that are highly coopera-

tive may also be able to maintain minimal changes in output for

small increases in input.

This simple observation that DI cascades will have intrinsically

distinct temporal activation properties from double activation

cascades is related to earlier work from Savageau on the noise

resistance of different regulatory schemes (Savageau, 1977).

Systems that switch on by a DI cascade are more noise resistant

than systems that switch on by an activation cascade because of

the intrinsic difference in which regimens of the dose-response

curve are steep or shallow.

Why Positive Feedback AND Motifs Are Better Kinetic
Filters than Positive Feedback OR Motifs
We then compared why the PFBAND motif is a more robust ki-

netic filter than the closely related PFBOR motif. Taking the

archetypical kinetic filter of each architecture and carefully dis-

secting the trajectory of output activation, we observe that for

the PFBAND motif, minimal output activation occurs until the

feedback activation loop has been triggered, as would be ex-

pected for the AND integration of the central node (Figure 4D).

Feedback activation can trigger only very late in the trajectory

because activation requires accumulation of the activated

node, which can only occur through leaky activation induced

by direct input activation.

In contrast, the PFBOR circuit is able to immediately show

gradual activation of the central node because the OR integra-

tion allows activation by the direct input even in the absence of

positive feedback. Thus, the PFBOR circuit activation trajectory

is inherently less steep than the equivalent PFBAND circuit.

DISCUSSION

General Classes of Signaling Networks Capable of
Kinetic Filtering and Their Potential Functional Roles
Here, we have used coarse-grained network enumeration to

identify classes of biochemical enzymatic networks that can

achieve kinetic filtering—the ability of a system to respond only

after input stimulation has sustained for a given threshold dura-

tion. Networks that execute kinetic filtering can play a central role

in filtering transient noise, interpreting complex dynamic inputs,

and controlling the timing of a sequence of events. Given the

growing appreciation of the importance of dynamics in cellular

information processing, it will be critical to understand themech-

anisms that can be used for kinetic filtering and recognize and

classify the networks that are found in cells (Purvis and Lahav,

2013). The design principles of such kinetic filters may also allow

us to design cellular circuits with precision temporal control (Lim

et al., 2013).

Kinetic filters must be able to absorb and dissipate input

pulses that are shorter than a threshold triggering time, thus sup-

pressing the resulting output. Here, we focus on two behavioral
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Figure 4. Turning off a Deactivator More Effectively Buffers against Partial Activation by Subthreshold Length Inputs

(A) Histogram of observed trigger times for minimal kinetic filtering circuits. Parameter sets of minimal double inhibition topologies (#4 and #21–24 in Figure 2C,

total 798 parameter sets) and the coherent feedforward loop topology (#25 in Figure 2C, total 88 parameter sets), satisfying a temporal ultrasensitivity score

of R0.5 and trigger time of R1 s were measured for trigger time.

(B) An archetypal architecture for each kinetic filtering motif was sampled for 50,000 parameter sets over the same range as the sampling used in the enumerative

search (kcat 0.1 to 10 and Km 0.001 to 100, evenly in log space by Latin hypercube). Shown in each plot are the temporal ultrasensitivity score and trigger time for

each parameter set of the archetypal topology that resulted in a temporal ultrasensitivity score ofR0.3 and trigger time ofR10 s (DI, 1,328 parameter sets; CFFL,

1,078 parameter sets; PFBAND, 2,135 parameter sets; and PFBOR, 115 parameter sets).

(C) Steady-state output changes at a more gradual pace with changing regulator concentration in double inhibition circuits compared to double activation

circuits. In both circuits, we solved for steady-state output node concentration as a function of [B] with KmBC = 0.5, kcatBC = 1, Km basal activator or deactivator =

0.5, kcat basal activator or deactivator = 1, and concentration of basal activator or deactivator = 0.1.

(D) Positive feedback AND circuits are better kinetic filters than positive feedback OR circuits because they require output to remain low until feedback activation

rises. Activation rate consists of activation due to input and activation due to feedback, which are multiplied in AND circuits and summed in OR circuits. Shaded

region delineates the zone between 5% and 95% of output activation.
parameters of the network: the trigger time—the threshold

stimulus duration time required to achieve half-maximal output

and temporal ultrasensitivity—the steepness of the system acti-

vation as a function of input duration. Ideal kinetic filters can be

considered to have both high temporal ultrasensitivity and high

trigger times.

Our metric of temporal ultrasensitivity is analogous to the co-

operativity index used to describe concentration-based ultra-

sensitivity. While well established, this metric is sensitive to right

translations: a temporal dose response of identical steepness

will have a poorer score if the trigger time is higher. Our analysis

has focused on general properties of broad classes of circuits,

but future work on kinetic filters may benefit from exploring other

metrics capable of distinguishing subtle behaviors such as

thresholding and switching (Gunawardena, 2005). Such alterna-

tive metrics might include direct fitting of a Hill function to the

transition region to disentangle the steepness of the response

from the trigger time in the temporal ultrasensitivity score. In
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addition, characterization of these motifs assuming dynamic

noise and perturbations such as cell division will further inform

our understanding of the robustness of these networks.

When we perform an exhaustive search for enzymatic net-

works capable of kinetic filtering, we identify five classes of

architectures. Some classes (PFBOR and CFFL) require trade-

offs between high temporal ultrasensitivity and long trigger

time, while others (PFBAND and DI) allow simultaneous optimiza-

tion of trigger time and temporal ultrasensitivity. These findings

suggest different potential functional roles for these different

classes of circuits (Figure 5A). The CFFL can effectively filter

against activation by relatively transient noise since this would

only require optimization of a high temporal ultrasensitivity

without a long trigger time. DI and PFBAND circuits may be better

as kinetic filters that also incorporate a longer timer or delay

function since they can exhibit a long trigger time without sacri-

ficing temporal ultrasensitivity. Finally, PFBAND circuits could

also be used in cases where memory or a long turn-off lag is
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Figure 5. Natural Examples of Kinetic Filters Feature Both Core and Combinatorial Kinetic Filtering Motifs
(A) Double inhibition, positive feedback AND, and coherent feedforward loop AND form the core set of kinetic filtering motifs.

(B) T cell activation is regulated by enzymatic networks that contain combined double inhibition and positive feedback AND motifs.

(C) Pluripotent-state exit in embryonic stem cells and cell cycle transitions in both mammalian and yeast cells are controlled by double inhibition and positive

feedback AND architectures with mixed enzymatic and transcriptional regulation.

(D) Erk activation of cFos is mediated by networks containing a coherent feedforward loop AND motif.

(E) Core kinetic filtering motifs can be combined to yield hybrid phenotypes.
needed, while CFFL and DI would bemore suited to cases where

rapid shut-off is optimal.

Combined DI and PFBAND Network in T Cell Activation
This analysis predicts that one should be able to find these circuit

types in natural kinetic filtering systems, although somemight be

preferred for a given functional context. There are several

signaling systems that are known to display kinetic filtering.

Here, we examine these natural evolved systems and compare

them with the motifs identified in this theoretical study.

Several natural kinetic filters seem to have converged upon a

similar combination of both the DI and PFBAND motifs, the two
most robust kinetic filtering architectures identified in this

work. Committed activation of T cells upon antigenic peptide-

major histocompatibility complex (MHC) engagement is thought

to involve kinetic filtering (Davis et al., 1998). Activation is only

observed with peptide-MHC complexes with sufficiently long

engagement times. One of the key proteins thought to play a

role in this kinetic filtering is the negative regulatory phosphatase

Shp1 (Altan-Bonnet and Germain, 2005; Feinerman et al., 2008).

Examination of the Shp1 network reveals a combined DI and

PFBAND circuit (Figure 5B). Shp1 acts as an inhibitor that re-

moves activating phosphorylation on the T cell receptor (TCR)

and some of its downstream effectors. Activation of the TCR
Cell Systems 9, 297–308, September 25, 2019 305



leads to its own phosphorylation and in subsequent steps, acti-

vation of the downstream mitogen activated protein kinase

(MAPK) Erk. Active Erk can in turn phosphorylate Shp1 in a

manner that is thought to lead to its dissociation from the TCR

complex.

Although all parameters of the circuit have not been experi-

mentally determined, measurements of native TCR signaling (Al-

tan-Bonnet and Germain, 2005) indicate that known parameters

for individual nodes and the trigger time of the circuit operate

in regimens expected by the model. The estimated kcat of ERK

activation (2.6 s�1) and SHP-1 phosphatase activity (5.4 s�1)

exhibit fast kinetics as predicted by the model. In addition, the

measured trigger times of the circuit (30–90 s) are within model

expectations.

Convergence on Combined DI and PFBAND Motifs in
Stem Cell Exit from Pluripotency and Cell Cycle
Transition Control Networks
Many if not most signal-processing networks in cells employ

mixed rather than solely enzymatic regulation. We expect that

similar circuit behaviors of the buffering input and slow accumu-

lation of the output can result when DI and PFBAND motifs

respectively appear in non-enzymatic networks, and the result-

ing circuits can exhibit kinetic filtering behavior through similar

mechanisms as we observed in enzymatic circuits.

Pluripotent embryonic stem cells differentiate only in response

to sustained but not transient differentiation signals (Sokolik

et al., 2015). The circuit that induces differentiation (or exit

from the pluripotent state) has a combined DI and PFBAND motif.

The Oct4-Sox2-Nanog complex maintains the pluripotent state

through an autoregulatory positive feedback loop, thus acting

as a repressor of differentiation. Differentiation factors induce

the switch by disrupting the Oct4-Sox2-Nanog complex through

competitive binding, leading to Nanog degradation and thereby

relief of the repression of differentiation (DI) (Figure 5C).

Recent studies have observed that several phase transitions in

the cell cycle utilize convergent regulatory networks (Figure 5C)

(Bertoli et al., 2013; Skotheim et al., 2008; Yang et al., 2013). In

each of these cases, the networks contain integrated DI and

PFBAND motifs. In key cell cycle transitions, the cell starts with

high activity of the cyclin-dependent kinase (CDK) in complex

with an initial phase. The cell must then sharply transition to

the next phase, associated with a sharp increase in the next-

phase cyclin-CDK complex. This combination of DI and PFBAND

networks appears to be optimal to drive this transition in a

temporally sharp and decisive manner.

All of these circuits, even though they operate at different

stages of the cell cycle or in different organisms, have a central

inhibitor that initially prevents output, i.e., next-phase cyclin-

CDK activity. For yeast entry into START (the G1-S transition),

the inhibitor is the protein Whi5, which binds to and inhibits the

transcription factor SBF. The transition initiates with a DI

cascade: when Whi5 is phosphorylated by the initial phase

G1-CDK enzyme, it initiates release from SBF, which in turn al-

lows SBF to initiate expression of G1-S-phase genes, including

the G1-S cyclins. This results in an increase in the G1-S CDK

enzyme, the next-phase cyclin-CDK complex, which then acts

in a strong positive feedback manner to even more strongly

phosphorylate and inactivateWhi5. Here, asWhi5 requires prim-
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ing phosphorylation by the G1-CDK complex but is more effi-

ciently phosphorylated by the G1-S CDK enzyme, it approxi-

mates an AND gate. Overall, this system shows a very sharp

temporal transition after a long delay, followed by a strong

commitment to the next phase, a combination of behaviors

that the DI and PFBAND hybrid network should be ideal for.

Here, the central inhibitory node (Whi5 = node B) is not an

enzyme, as in the case of the network models used in our

coarse-grained search but is instead a stoichiometric inhibitor.

This particular molecular manifestation of the network is ex-

pected to show temporal ultrasensitivity as long as the binding

of Whi5 to SBF is sufficiently tight (Figure S8).

The identical hybrid network is observed in other cell cycle

transitions. In mammalian G1-S entry, the protein Rb serves as

the central inhibitory node analogous to Whi5, even though it is

evolutionarily unrelated (Bertoli et al., 2013). Rb is an inhibitor

of a transcription complex, and Rb’s function is in turn initially in-

hibited by G1-CDK-mediated phosphorylation. Rb’s inhibition

leads to expression of the G1-S cyclins, leading to positive feed-

back when the G1-S CDK enzyme strongly phosphorylates Rb.

In the case of the yeast S phase entry, the protein Sic1 serves

as a central inhibitory node. Sic1 is a direct inhibitor of the S-CDK

complex but is initially phosphorylated by the earlier stage G1-S

CDK enzyme. In a DI motif, phosphorylation of Sic1 leads to its

degradation, initiating activation of the next-phase G1-CDK

enzyme. This leads to positive feedback since the G1-CDK

enzyme more strongly phosphorylates Sic1, leading to its even

more rapid degradation.

CFFL Motifs in Natural Kinetic Filtering Circuits: Erk
Activation of cFos
One classical example of kinetic filtering is the activation of the

cFos protein only in response to sustained activation of the

MAPK Erk (Figure 5D). In this case, activation of cFos occurs

through a CFFL network (Murphy et al., 2002). Erk activation of

transcription factors leads to increased transcription of the

cFos gene. The cFos protein is, however, rapidly degraded so

it does not accumulate. Erk also directly phosphorylates the

cFos protein, resulting in cFos stabilization. Here, Erk-mediated

transcription of cFos serves as the slow branch of the CFFL

network, while direct Erk phosphorylation of cFos serves as

the fast branch. cFos accumulation acts as an AND gate since

both cFos transcription and phosphorylation are required.

It is hard to know exactly why the somewhat less robust CFFL

architecture is used in this case. One possibility is that in some

cases (e.g., EGF stimulation), Erk activation occurs in pulses,

where the frequency of pulses can convey information (Albeck

et al., 2013). For a downstream output to effectively integrate

multiple Erk pulses only when they are relatively close together

would require a system that neither shuts off immediately nor

has an extremely long lag time. The CFFL may be ideal for this

kind of frequency-encoded information since the DI networks

shut off extremely fast and the PFBAND networks show very

long turn-off lag.

Other Potential Combinatorial Kinetic Filtering
Networks
Some of the best-characterized cellular systems that display

kinetic filtering contain combinations of the ideal core motifs



identified in our analysis. We predict several other possible

combinatorial motif circuits to have useful combinations of

behaviors. Three-node hybrid DI and PFBOR circuits exhibit

both delayed appearance of output, a DI feature and bistability,

a PFBOR feature (Figure S9). A DI and CFFL combination circuit

(Figure 5E) is expected to yield both a long trigger time and inter-

mediate off kinetics. Such a circuit could be used to integrate

multiple wide pulses of input. Combining CFFL and PFBAND

could lead to efficient transient noise filtration combined with a

committed transition. These networks built of multiple combina-

tions of the core kinetic filtering motifs require more than three

nodes and thus would not have been identified from our enumer-

ation of 3-node networks.

It is likely that the coremotifs identified here could be combined

together, both sequentially or in an interlinked manner to build

even more effective kinetic filters with longer trigger times or in

a way that can overcome particular functional trade-offs of the in-

dividual simpler motifs. We have previously found that a similar

combinatorial use of minimal motifs leads to more robust cell po-

larization circuits (Chau et al., 2012). Multiple kinetic filters could

be linked together in higher-order sequences of events that con-

trol processes such as the cell cycle or trafficking, which require

distinct steps to occur in a defined order. It is also possible that

these minimal motifs could be combined with oscillatory net-

works to yield timer systems that combine pulsatile clock-like

mechanisms with kinetic filtering (S€uel et al., 2007).

While our analysis has focused on enzymatic networks to limit

the scope of enumeration, many physiological circuits combine

multiple types of regulation. Future work should explore circuits

with transcriptional and mixed regulation, as natural circuits may

take advantage of different inherent timescales of each regula-

tion type to produce kinetic filtering architectures that are not

possible with purely enzymatic circuits.

Evolutionary Choice of Signaling Enzyme Regulatory
Mechanisms May Be Linked to Dynamic Response
Behaviors
The diverse dynamic behaviors examined here may also explain

why particular molecular mechanisms of regulation are chosen

for different signaling enzymes. One of the most prevalent

molecular mechanisms to gate signaling enzyme activity is

regulation via an inhibitory domain that can act in trans or cis

(autoinhibition). Activation can thus occur via DI or relief of auto-

inhibition. Although these mechanisms of enzyme regulation are

very similar at a molecular level, this study suggests that when

incorporated into circuits, the two molecular switches will have

very different dynamical properties. At a network level, circuits

with core nodes that rely on regulation by relief of autoinhibition

will behave similar to conventional activation cascades, which

can switch on faster but are less likely to have sharp temporal ul-

trasensitivity. In contrast, systems with an unlinked inhibitor

could achieve much sharper temporal ultrasensitivity. It will be

interesting to explore whether known signaling systems that

use trans inhibition (e.g., protein kinase A, which is regulated

by an inhibitory subunit that dissociates upon cAMP binding)

are associated with robust time delays, while those that use cis

inhibition (e.g., Src kinases, which are regulated by intramolecu-

lar autoinhibitory domain interactions) are associated with faster,

more immediate processes.
Conclusions
Themotifs and understanding that emerge from this enumerative

circuit analysis provide a useful roadmap for more deeply and

predictively understanding how cells interpret dynamic informa-

tion. These mechanisms can help understand why particular

network perturbations that might disrupt timing control could

contribute to diseases such as cancer. The motifs that emerge

also provide a catalog by which to define key dynamical control

elements within complex cellular networks mapped by proteo-

mic and genomic methods. Further computational and experi-

mental exploration of natural biological circuits will uncover the

prevalence and functions of these minimal motifs and combina-

tions thereof for cellular signaling.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Circuit simulator and dose response feature calculator This study https://github.com/jgerardin/persistence-detection

Topology generation and parameter sampling scripts This study https://github.com/jgerardin/persistence-detection

Cluster for phenotypic clustering de Hoon et al., 2004 https://www.encodeproject.org/software/cluster/

SciPy linalg.svd for principal component analysis SciPy https://www.scipy.org

Java TreeView Saldanha, 2004 http://jtreeview.sourceforge.net/
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Wendell

Lim (wendell.lim@ucsf.edu).

METHOD DETAILS

Simulation of Biochemical Circuits
Reactions were modeled with total quasi-steady-state Michaelis-Menten kinetics (Ciliberto et al., 2007; Gomez-Uribe et al., 2007;

Tzafriri, 2003). Nodes were converted between active and inactive states according to network linkages, where positive regulations

catalyzed activations and negative regulations catalyzed deactivations (Figure S1). The total concentration of each node was held

constant at 1. For nodes operating under OR logic, Michaelis-Menten expressions for incoming links were added. For nodes oper-

ating under AND logic, Michaelis-Menten expressions for incoming links of the same sign were multiplied, and expressions for

incoming links of opposite signs were added. Each circuit was numerically integrated with a fifth-order embedded Runge-Kutta for-

mula (Press et al., 2002). Active concentrations of each node were initialized to 0.1 and allowed to come to steady state before the

application of input.

To enumerate circuit topologies, we allowed each link to be positive, negative, or absent. We discarded topologies where the input

signal did not reach the output node. Circuits with regulations on a non-input, non-output node that did not in turn regulate another

node were also discarded. For AND logic topologies, we discarded all circuits where the node with AND logic did not have two reg-

ulatory links of the same sign, counting input as a positive regulation.

In addition to the regulations between nodes A, B, andC, a circuit had additional constitutive activators and deactivators as needed

such that no node had only activators or only deactivators (Figure S1). Constitutive activators and deactivators had constant con-

centration of 0.1. Up to 26 parameters were sampled for each circuit: kcat and Km for each of the nine possible circuit links, three

possible constitutive activators and deactivators, and the input link. Node concentration was held constant at 1.0 and not sampled.

Only the active fraction of a specific node can catalyze other reactions at a given time. All parameter samplings used the Latin hy-

percubemethod (Iman et al., 1980) with range 0.1 to 10 for kcat and 0.001 to 100 for Km; this range is roughly physiological with units of

seconds and mM. 10,000 parameter sets were sampled for the enumerative search and 100,000 for determining parameter regime

restrictions.

Quantification of Circuit Performance
Input pulses of duration 0.25, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 800, 1000,

2000, 3000, 5000, 6000, 8000, 10000, 20000, and 50000 seconds were applied separately to each parameter set of each topology.

Input amplitudewas set to 0.1 for all simulations to allow for comparison between circuits. Maximumoutput amplitudewasmeasured

over the period covering both the duration of the input pulse as well as a post-pulse recovery period lasting until the system came to

steady state. Circuits that failed to reach steady state within 86,400 simulation seconds were removed from consideration. Inverting

circuits whose output decreased with application of input were also discarded.

Temporal ultrasensitivity was quantified by plotting the circuit’s maximum output amplitude for each duration of input and

measuring the temporal ultrasensitivity score (TU score) of the resulting curve (Figure 1B). TU score was defined as the ratio of input

duration yielding 10% of maximum response to input duration yielding 90% of maximum response, analogous to cooperativity score

in classical dose response curves (Goldbeter and Koshland, 1981). The 10% and 90% input durations were determined by interpo-

lating a linear fit between the simulated input durations bracketing the 10% and 90% response amplitudes respectively. The

response threshold T was determined by linear fit to identify input duration at 50% maximum output amplitude.
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Maximal response (Rmax) and difference between maximal and minimal response (DR) were also measured for each circuit.

Circuits with Rmax < 0.001 or DR/Rmax < 0.5 were considered to have insufficient response amplitude and were not considered

to be kinetic filters.

QUANTIFICATION AND STATISTICAL ANALYSIS

Simulation of enzymatic circuits and calculations of dose response features were performed in C++. Python 2.7 was used for

simulation management and data analysis. Hierarchical clustering was performed using Cluster (Cluster 3.0 for Max OS X within

the C Clustering Library v1.36) with Euclidean distances and centroid linkage and visualized with Java TreeView. Principal compo-

nents were calculated using the SciPy v0.11.0 linalg.svd singular value decomposition package.

DATA AND CODE AVAILABILITY

Circuit simulation, dose response measurement, topology generation, and parameter sampling software are available in the Github

repository https://github.com/jgerardin/persistence-detection.
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