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Chimeric antigen receptors (CARs) have demonstrated the 
power of synthetic signaling receptors as tools to reprogram 
immune cells to execute therapeutic functions, such as tar-
geted killing of tumor cells (1). The antitumor efficacy of 
CARs is strongly modulated by the signaling domains that 
they contain. Current clinically approved CARs contain a core 
T cell receptor (TCR) signaling domain from CD3ζ [contain-
ing immunoreceptor tyrosine-based activation motifs 
(ITAMs) that recruit the kinase ZAP70] (2–4), along with a 
costimulatory signaling domain from either the CD28 (5, 6) 
or 4-1BB (7) costimulatory immune receptors (8–10). The 
costimulatory domains are themselves composed of multiple 
signaling motifs, short peptides that bind to specific down-
stream signaling proteins, often through modular protein in-
teraction domains [e.g., Src Homology 2 (SH2), Src Homology 
3 (SH3), or other domains (11, 12)]. Such peptide signaling 
motifs (referred to as linear motifs) are the fundamental 
building blocks controlling the output of most signaling re-
ceptors. The constellation of signaling proteins recruited by 
a particular array of signaling motifs upon receptor stimula-
tion is thought to shape the distinct cellular response. For 
example, in CARs, the 4-1BB costimulatory domain which 
contains binding motifs for tumor necrosis factor receptor-
associated factors (TRAF) signaling adaptor proteins leads to 
increased T cell memory and persistence; the CD28 costimu-
latory domain, which contains binding motifs for phosphati-
dylinositol-3-kinase (PI3K), growth factor receptor-bound 
protein 2 (Grb2), and lymphocyte-specific protein tyrosine 

kinase (Lck), is associated with more effective T cell killing, 
but reduced long-term T cell persistence (13). Thus, signaling 
motifs can be thought of as the “words” that are used to com-
pose the phenotypic “sentences” communicated through sig-
naling domains. 

A major and still mostly outstanding goal in synthetic bi-
ology is to predictably generate new cell phenotypes by alter-
ing receptor composition. For example, in cancer 
immunotherapy, a general goal is to enhance T cell anti-tu-
mor cytotoxicity but to also maintain a stem-like state asso-
ciated with longer-term T cell persistence. Such a phenotype 
is associated with effective and durable tumor clearance 
(higher stemness is correlated with more resistance to T cell 
exhaustion). Libraries of costimulatory domains have been 
screened for improved phenotypes (14–16). However, the 
costimulatory domains used were from natural immune re-
ceptors (i.e., alternative pre-existing “sentences”, to use the 
analogy to language). We propose that a more effective way 
to scan phenotypic space for synthetic receptors is to create 
libraries that sample new combinations of signaling motifs. 
Such an approach could, in principle, yield phenotypes that 
extend beyond those that can be generated by native receptor 
domains alone. Moreover, exploration of a broader range of 
receptor “motif space” could lead to a more systematic under-
standing of how different parameters of output are encoded 
by motif identity, combination, and order. 

We recombined 13 signaling motifs (words) to create a 
CAR costimulatory domain library with randomized motif 

Decoding CAR T cell phenotype using combinatorial 
signaling motif libraries and machine learning 
Kyle G. Daniels1,2, Shangying Wang3,4, Milos S. Simic1,2, Hersh K. Bhargava1,2, Sara Capponi3,4, Yurie Tonai1,2, 
Wei Yu1,2, Simone Bianco3,4†*, Wendell A. Lim1,2,4* 
1Cell Design Institute, University of California, San Francisco, San Francisco, CA 94158, USA. 2Department of Cellular and Molecular Pharmacology, University of California, 
San Francisco, San Francisco, CA 94158, USA. 3Department of Functional Genomics and Cellular Engineering, IBM Almaden Research Center, San Jose, CA 95120, USA. 
4Center for Cellular Construction, San Francisco, CA 94158, USA. 

†Present address: Altos Labs, Redwood City, CA 94065, USA. 

*Corresponding author. Email: sbianco@altoslabs.com (S.B.); wendell.lim@ucsf.edu (W.A.L.) 

Chimeric antigen receptor (CAR) costimulatory domains derived from native immune receptors steer the 
phenotypic output of therapeutic T cells. We constructed a library of CARs containing ~2,300 synthetic 
costimulatory domains, built from combinations of 13 signaling motifs. These CARs promoted diverse cell 
fates, which were sensitive to motif combinations and configurations. Neural networks trained to decode 
the combinatorial grammar of CAR signaling motifs allowed extraction of key design rules. For example, 
non-native combinations of motifs which bind tumor necrosis factor receptor-associated factors (TRAFs) 
and phospholipase C gamma 1 (PLCγ1) enhanced cytotoxicity and stemness associated with effective tumor 
killing. Thus, libraries built from minimal building blocks of signaling, combined with machine learning, can 
efficiently guide engineering of receptors with desired phenotypes. 

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of C

alifornia San Francisco on D
ecem

ber 08, 2022

https://www.science.org/


First release: 8 December 2022  science.org  (Page numbers not final at time of first release) 2 
 

combinations (new sentences) (Fig. 1). This library of new sig-
naling “sentences” produced a range of phenotypes, including 
combinations of phenotypes not observed with native signal-
ing domains. We used neural networks to decode the lan-
guage of signaling motifs, create predictive models, and 
extract design rules that inform the engineering of CAR sig-
naling domains that increase cytotoxicity and stemness. 
 
Results 
A CAR library with synthetic combinations of signaling 
motifs generates diverse CAR T cell cytotoxicity and 
memory potential 
To construct a combinatorial library of CAR signaling do-
mains, we searched the Eukaryotic Linear Motif Database 
(ELM) (17) and primary literature to curate a collection of 12 
peptide motifs from natural signaling proteins that recruit 
key downstream signaling proteins that function in T cell ac-
tivation. The motifs in the library recruit proteins such as 
phospholipase C gamma 1 (PLCγ1), TNF receptor-associated 
factor associated factors (TRAFs), growth factor receptor-
bound protein 2 (Grb2), Grb2-related adaptor downstream of 
Shc (GADS), Src homology region 2 domain-containing phos-
phatase (SHP-1), vav guanine nucleotide exchange factor 1 
(Vav1), phosphatidylinositol-3-kinase (PI3K), lymphocyte-
specific protein tyrosine kinase (Lck), and Pellino protein. 
For example library motif 1 is derived from the linker for ac-
tivation of T cells (LAT) and contains the core motif YLVV—
which when tyrosine-phosphorylated, binds the N-terminal 
SH2 domain of PLCγ1 with high specificity (18). Motif 6, con-
tains the motif ITYAAV from the leukocyte associated immu-
noglobulin-like receptor 1 (LAIR1), which binds the 
phosphatase SHP-1 through its SH2 domain (19). In addition 
to the 12 signaling motifs, we included a spacer motif as the 
13th component in the library. The combinatorial library was 
constructed within the context of an anti-CD19 CAR (contain-
ing an anti-CD19 extracellular single-chain variable fragment 
and a CD3ζ signaling domain). The synthetic costimulatory 
domains had either one, two, or three signaling motifs. The 
13 motifs were randomly inserted in positions i, j, and k (Fig. 
1) to yield 2379 different motif combinations (Fig. 1, B to E). 
To confirm that the library displayed sufficient phenotypic 
diversity, we first performed low resolution pooled screens, 
in which we transduced a mixed population of CD4+ and 
CD8+ primary human T cells at low multiplicity of infection 
and activated the pool with Nalm 6 leukemia cells (CD19+) 
for 8-9 days. We used FACS-based sequencing enrichment as-
says to observe a diverse range of phenotypic outputs for T 
cell proliferation, formation of central memory T cells ex-
pressing receptor-type tyrosine-protein phosphatase C 
(CD45RA) and lacking L-selectin (CD62L), and T cell degran-
ulation [lysosome-associated membrane glycoprotein 1 
(CD107A+) T cells, a proxy for cytotoxic response] (fig. S1). All 

T cells were activated with beads displaying CD3 and CD28 
to allow for viral transduction, and subsequent activation 
through CARs with unique signaling domains led to diver-
gent phenotypes. 

To screen the library at higher resolution, we transformed 
bacteria with library plasmid stocks and randomly picked 
colonies to select a subset of over 200 CARs from the combi-
natorial library to characterize in an arrayed screen (Fig. 1E). 
An arrayed screen—in which each CAR is studied inde-
pendently— was important because immune paracrine sig-
naling could confound analysis of pooled CAR T cell screens. 
We activated the CD4+ and CD8+ CAR T cells in the arrayed 
screen by culturing with Nalm 6 (CD19+) cells for 8 to 9 days. 
Four pulses of Nalm 6 cells were used to mimic longer term 
stimulation that can exacerbate T cell exhaustion. At the end 
of the co-culture, we used flow cytometry to assess cytotoxi-
city of the mixed CD4+ and CD8+ CAR T cell populations 
(based on Nalm 6 cell survival), stemness [Interleukin-7 re-
ceptor subunit alpha (IL7Rα+) and killer cell lectin receptor 
G1 (KLRG1−)] (20–23), and maintenance of T cell populations 
with markers of central memory or naïve state (CD45RA and 
CD62L). 

The CARs in the arrayed screen displayed a range of cyto-
toxicity and stemness. The total naïve and central memory 
population was positively correlated with cytotoxicity (fig. 
S2B). Stemness and the naïve population were roughly pro-
portional across the library (fig. S2, C and D). However, cyto-
toxicity and stemness were uncoupled. This observation 
underscores the ability of unusual combinations of motifs in 
costimulatory domains to drive CAR T cells to varied cell fates 
with particular combinations of phenotypes. Several costim-
ulatory domains produced cytotoxicity and stemness compa-
rable to that of 4-1BB. Many of these contained motifs that 
recruit both TRAFs (motif 9, motif 10, motif 11) and PLCγ1 
(motif 1). For example, M10-M10-M1-ζ, M10-M1-M1-ζ, M11-
M10-M1-ζ, and M4-M9-M1-ζ all promoted cytotoxicity and 
stemness. 
 
Neural networks predict the CAR T cell cytotoxicity and 
memory potential encoded by combinations of  
signaling motifs 
The diverse cytotoxicity and stemness profiles observed in 
our arrayed screen are consistent with a complex relationship 
between signaling motif combinations and arrangement, and 
resulting T cell phenotypes. We sought to leverage the com-
binatorial nature of the costimulatory domain library by us-
ing machine learning to decode the “language” of signaling 
motifs that relates motif combinations to cytotoxicity and 
stemness outputs. We separated the arrayed screen data into 
a training set (221 examples) and a test set (25 examples). We 
then used these data sets to train several machine learning 
algorithms to predict cytotoxicity and stemness based on 
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costimulatory domain identity and arrangement (Fig. 2A and 
fig. S3). Neural networks (Fig. 2B) were best able to recapitu-
late the measured phenotypes in the training data (Fig. 2C) 
and to effectively predict the phenotypes in the test set (Fig. 
2D). For both cytotoxicity and stemness training and test sets, 
the neural network was able to capture much of the relation-
ship between signaling motif composition and phenotype, 
with R2 values of approximately 0.7 to 0.9. 

The trained neural networks then allowed us to predict 
the CAR T cell cytotoxicity and stemness that would result 
from each of the 2379 motif combinations in the full combi-
natorial library (Fig. 2D), including those that were not part 
of the smaller arrayed screen. These simulated 2379 CARs 
sample the entire combinatorial space of the library, provid-
ing a dataset from which we extracted design rules. We ana-
lyzed: i) the overall contribution of each motif to a particular 
phenotype (without regard to combinatorial context); ii) 
identification of pairwise motif combinations that promote 
particular phenotypes, and iii) positional dependence of mo-
tifs. 
 
Distribution analysis summarizes the effects of  
signaling motifs, motif combinations, and motif  
positions on CAR T cell phenotype 
To assess the overall contribution of individual motifs, we 
ranked all the CARs in our library by neural network-pre-
dicted cytotoxicity and stemness and then assessed whether 
motifs were enriched in the strong or weak ends of the phe-
notypic distribution (Fig. 3A and fig. S4). If a motif is gener-
ally activating for a phenotype, then it is expected to be more 
common in highly ranked CARs; if a motif is inhibitory it is 
expected to be more common in poorly ranked CARs. Alt-
hough the effects observed in this distribution analysis de-
pend on other motifs in the CAR and the position of the motif 
in question, the distributions are informative of the overall 
effect each motif has in the context of the library. An analo-
gous distribution analysis was also done on the pooled 
screening proliferation data (fig. S5). 

This distribution analysis highlighted several effective 
motifs that have activating and inhibitory roles. For example, 
motif M9 is the PQVE motif [from cluster of differentiation 
40 (CD40)], which binds TRAF2, and is associated with T cell 
activation and function (24, 25). Accordingly, M9 is enriched 
in CARs with high cytotoxicity (mean 66th percentile) and 
high stemness (mean 63rd percentile), indicating that overall 
it promotes both of these phenotypes. In a contrasting exam-
ple, M6 (from LAIR1) recruits the phosphatase SHP-1, an in-
hibitor of T cell activation. Accordingly, M6 is enriched in 
CARs with low cytotoxicity (mean 36th percentile) and low 
stemness (mean 45th percentile), indicative of inhibition of 
both phenotypes. Some motifs can activate one phenotype 
and inhibit another: M5, which binds Vav1, is unrepresented 

in CARs with high cytotoxicity (mean 25th percentile), but 
overrepresented in CARs with high stemness (mean 64th per-
centile). Thus, Vav1 signaling appears to promote stemness, 
while inhibiting killing. The quantified effects of all individ-
ual motifs on cytotoxicity and stemness are shown in the 
heatmap in fig. S4. The TRAF binding motifs (M9 and M10) 
are among the best at promoting both cytotoxicity and stem-
ness. 

We anticipated that phenotypes would be highly depend-
ent on motif combinations, as different downstream signal-
ing pathways could be either complementary, redundant, or 
competing. To examine motif pairs that favored particular 
phenotypes, we examined the occurrence of each possible 
pair (without regard to order) in the ranked distribution. Sev-
eral specific motif pairs appear to promote both cytotoxicity 
and stemness when they occur in combination within a cost-
imulatory domain. For example, M1 (PLCγ1) and M10 (TRAF) 
were each activating with respect to cytotoxicity (means: 58th 
and 60th), but the M1+M10 motif pair was even more strongly 
activating (mean: 75th percentile). The predicted mean cyto-
toxicity and stemness percentiles for all 144 pairs of motifs 
M1 to M12 are shown in Fig. 3B. The motif pairs M1+M10, 
M1+M9, M9+M9, and M9+M10 were best at promoting cyto-
toxicity and stemness. These pairs all demonstrate that 
TRAF-binding motifs (M9 and M10) work well in tandem, as 
well as in combination with the motif that recruits PLCγ1 
(M1) whose signaling activates nuclear factor kappa B 
(NFκB). Thus these pathways may serve complementary roles 
in these phenotypes. A number of motif pairs strongly inhib-
ited cytotoxicity and stemness. All four motif pairs with the 
lowest cytotoxicity and stemness contain M6 which binds the 
inhibitory phosphatase SHP-1. 

The phenotype of CAR T cells was highly dependent on 
the position of a motif within the costimulatory domain (fig. 
S4B). For example, M1 (PLCγ1) showed strong cytotoxicity 
when in positions k or j, and weak cytotoxicity in position i 
(Fig. 3, C and D). M9 (TRAF) and M10 (TRAF) showed opti-
mal cytotoxicity and stemness when in positions i and j. This 
is consistent with the experimental observation that TRAF-
binding parts M9 and M10 followed by M1 (in N- to C-termi-
nal order) promote the most cytotoxicity and stemness (M1 
followed by M9 or M10 does not (fig. S2E). These results in-
dicate that shuffling motif position is an approach for cali-
brating phenotype. 

The above distribution analysis quantifies elements of 
motif language, capturing the effects of motifs (word mean-
ing), motif pairs (word combinations), and motif position 
(word order) on phenotype. The analysis also yields design 
rules that can inform combinations and arrangements of mo-
tifs capable of producing a desired cell fate. For example, a 
synthetic costimulatory domain that contains one or more 
TRAF binding motifs (M9 or M10) followed by a PLCγ1 (M1) 
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motif appears to be effective at promoting both cytotoxicity 
and stemness (Fig. 4A). Although tandem TRAF binding mo-
tifs occur in the naturally evolved 4-1BB receptor (26) (fig. 
S6A), the combination of TRAF and PLCγ1 motifs is not found 
in natural characterized immune receptors. Thus, we tested 
whether adding PLCγ1 (M1) motifs to 4-1BB-like domains 
could improve phenotypes induced by CARs. Moreover, we 
also wanted to determine if adding M1 might be a general 
strategy to improve the efficacy of other costimulatory do-
mains, such as CD28. 
 
Neural networks predict addition of M1 enhances the 
cytotoxicity and memory potential of 4-1BB-ζ but not 
CD28-ζ 
We examined the neural network-predicted library to predict 
the effects of adding the M1 motif to CD28-like and 4-1BB-
like synthetic costimulatory domains (library members 
whose signaling motifs shared the overall configuration of 
natural signaling motifs in CD28 and 4-1BB) (Fig. 4A). The 4-
1BB-like costimulatory domains were predicted by the neural 
network model to show increased cytotoxicity and stemness, 
consistent with experimental observations. In contrast, addi-
tion of M1 motifs to CD28-like costimulatory domains was 
not predicted to enhance cytotoxicity or stemness. 

To experimentally test this, we synthesized derivatives of 
the 4-1BB and CD28 costimulatory domains with 1 or 2 copies 
of the M1 motif added to the C terminus, and tested the ef-
fects of these costimulatory domains on killing of Nalm 6 and 
maintenance of T cell stemness (Fig. 4B). Consistent with pre-
dictions, 4-1BB showed significantly enhanced cytotoxicity 
and stemness upon addition of M1, while CD28 showed al-
most no change. Significantly, in addition to predicted in 
vitro changes, the 4-1BB-M1-M1-ζ CAR construct showed im-
proved efficacy in a Nalm 6 tumor Nod scid gamma (NSG) 
mouse model (Fig. 4C and fig. S6). Relative to standard 4-1BB 
CAR T cells, the 4-1BB-M1-M1-ζ CAR T cells delayed the 
growth of Nalm 6 tumor cells for an additional two weeks, in 
agreement with the predictions from the library and neural 
network model. 

Why might a PLCγ1 motif improve T cell phenotype in 
combination with the 4-1BB domain (TRAF motifs) but not 
in the context of the CD28 domain (PI3K, Grb2, Lck motifs)? 
PLCγ1 catalyzes the production of diacylglycerol (DAG) from 
phosphatidylinositol 4,5-bisphosphate (PIP2), which activates 
Ras guanyl-releasing protein (RasGRP) and protein kinase C 
theta (PKCθ), subsequently activating the extracellular sig-
nal-regulated kinases (ERK1 and 2) and NFκB. This signaling 
is similar and possibly redundant to that of PI3K and Grb2, 
which also activate RasGRP and PKCθ. TRAF signaling, how-
ever, does not activate RasGRP or PKCθ, such that PLCγ1 and 
TRAF signaling are more likely to be complementary (Fig. 
4D). We experimentally characterized the 4-1BB-M1-M1-ζ 

CAR construct (compared to standard 4-1BB-ζ CAR) by meas-
uring the kinetics of phosphorylation of protein kinase B 
(Akt), ERK1 and 2, and NFκB after stimulation by Nalm 6 
(Fig. 4E and fig. S7A). The addition of the M1 motifs increased 
phosphorylation of ERK1 and 2 (1.7-fold) and NFκB (2.4-fold), 
both of which depend on activation of PLCγ1. Phosphoryla-
tion of Akt, which is not dependent on PLCγ1, showed only a 
1.2-fold increase. The observed increase in activation of NFκB 
and ERK1 and 2 supports the hypothesis that PLCγ1 signaling 
is complementary to TRAF signaling and is consistent with 
importance of NFκB activation for the maintenance of CD8+ 
T cell memory (27). In contrast, no significant increase in ac-
tivation of NFκB and ERK1 and 2 was observed for a CAR in 
which the PLCγ1 motif was appended to the CD28 costimula-
tory domain. We observed little additional activation-induced 
increase in PLCγ1 phosphorylation in the cells bearing the 4-
1BB-M1-M1-ζ CAR (fig. S7C), suggesting that M1 may enhance 
signaling by altering the precise spatial organization of PLCγ1 
binding sites (28) or by promoting PLCγ1-dependent LAT 
clustering (29). 
 
Conclusions 
In conclusion, we find that signaling motif libraries and ma-
chine learning can be combined to elucidate rules of CAR 
costimulatory signaling and to guide the design of non-natu-
ral costimulatory domains with improved phenotypes, both 
in vitro and in vivo. Costimulatory signaling modulates the 
outcome of CAR T cell activation, making costimulatory do-
mains attractive engineering targets for customizing or im-
proving cell therapies. Thus far, costimulatory domain 
engineering has mostly been limited to the addition of intact 
natural domains such as those from 4-1BB, CD28, or the in-
terleukin-2 receptor beta subunit (IL2Rβ), effectively using 
naturally occurring signaling sentences (motif combina-
tions). We used motifs from receptors as words to generate 
thousands of different signaling sentences that drove T cells 
to distinct cell fates, potentially yielding more diverse and nu-
anced phenotypic meaning. Augmenting experimental analy-
sis of a subset of receptors with neural network analysis 
allowed us to explore a larger region of combinatorial motif 
space. In particular, we identified the non-natural combina-
tion of TRAF- and PLCγ1-binding motifs that may be useful 
in CAR T cell therapies. With an arrayed screen of several 
hundred receptors and machine learning, we identified basic 
elements of signaling motif language and extracted design 
rules that relate motif combinations to cell fate. This repre-
sents a step toward forward engineering receptors with de-
sired properties. Similar screening approaches with other 
CARs and target cancer cells are needed to determine the op-
timal signaling domains for each CAR and tumor type. Li-
braries may also be of use in identifying combinations of 
binding, hinge, linker, transmembrane, and signaling 
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domains that produce optimal T cell function, and assessing 
the safety and toxicity of such combinations. Exploration of 
these larger libraries may benefit from machine learning due 
to the size and complexity of the combinatorial space. Ma-
chine learning-augmented screens of this type might be used 
to engineer many other classes of receptors for biological re-
search and cell therapy applications involving cellular pro-
cesses controlled by combinations of signaling motifs. 
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Fig. 1. CAR costimulatory domains with synthetic signaling motif combinations generate diverse 
cell fates with decoupled cytotoxicity and stemness. (A) A diverse set of proteins that function in 
T cell signaling are recruited by signaling motifs in the library parts. (B) Description of library parts 
used in combinatorial library. Each part is 16 to 18 amino acids including the signaling motif(s) and 
flanking sequence. Phospho-tyrosines are shown in bold. (C) New combinations of signaling motifs 
create distinct CAR signaling programs that control T cell phenotype. (D) Schematics of αCD19 CAR 
with variable signaling domains. (E) CAR T cells with various signaling motif combinations produce a 
broad range of cytotoxicity and stemness. CD4+ and CD8+ CAR T cells were pulsed 4 times with 
Nalm 6 leukemia cells and assayed for CAR T cell cytotoxicity and stemness. Errors for Nalm 6 
survival, and stem-like IL7Rα+/KLRG1− population in (E) were estimated by calculating the average 
standard deviation for 7 CAR constructs with internal replicates in the array. 
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Fig. 2. Neural networks decode the combinatorial language of signaling motifs to predict 
cytotoxicity and stemness of novel motif combinations. (A) Array data were subdivided in datasets 
to train and test neural networks that were subsequently used to predict the cytotoxicity and 
stemness of 2379 CARs. (B) Schematic of neural network used to predict CAR T cell phenotype.  
(C) Neural networks trained on array data predict the cytotoxicity and stemness of CARs in the 
training sets (black) and the withheld test sets (pink). The root mean squared error (RMSE) for the 
cytotoxicity training set is 0.07579 and the RMSE for the cytotoxicity test set is 0.1327. RMSE for the 
stemness training set is 2.2038 and the RMSE for the stemness test set is 4.7941. (D) Trained neural 
networks were used to predict the cytotoxicity and stemness of 2379 CARs containing 1-3 variable 
signaling motifs. Predictions represent the mean for n=10 neural networks with different 
hyperparameters. 
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  Fig. 3. Distribution analysis quantifies elements of linear motif language to extract design 
parameters for signaling domains. (A) The distribution of library parts throughout CARs in the 
ranked library reflects effects of signaling motifs on phenotype. Activating motifs are found in CARs 
with higher rank and inhibitory motifs are found in CARs with a lower rank. The three lines within the 
distributions represent mean predictions ± s.e.m. calculated from n=10 neural networks. (B) CARs 
containing pairs of motifs that recruit TRAFs (M9 and M10) or PLCγ1 (M1) promote high cytotoxicity 
and stemness. Pairs promoting the highest and lowest cytotoxicity and stemness were determined 
by taking the sum of the mean percentile for each phenotype. (C) Cytotoxicity percentile 
distributions for CARs containing M1 at various positions demonstrate that effects of signaling motifs 
on phenotype are position-dependent. (D) Position-dependence of signaling motifs is quantified by 
calculating the mean of percentile distributions. M1 is predicted to promote cytotoxicity best at 
position k, while M6 is predicted to inhibit cytotoxicity best at position k. 
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 Fig. 4. Neural networks accurately predict that PLCγ1 binding motifs improve the cytotoxicity 
and stemness of 4-1BB-ζ but not CD28-ζ. (A) Library parts that share consensus signaling motifs 
with 4-1BB and CD28 costimulatory domains were used to predict the effect of adding M1 to  
4-1BB and CD28. (B) Addition of 1 or 2 copies of M1 improved in vitro cytotoxicity and stemness of 
4-1BB-ζ but not CD28-ζ. CAR T cell cytotoxicity and stemness were assessed after 4 pulses of Nalm 
6 cells. Data are mean of n = 3-5 replicates. (C) CD4+ and CD8+ CAR T cells were sorted for CAR 
expression 6 days after activation (1 day after Dynabead removal), and injected into mice 10 days 
later. NSG mice were injected intravenously with 0.5 × 106 Nalm 6 cells, and then injected 
intravenously with 3 × 106 CAR+ T cells on day 4. CAR T cells with 4-1BB-M1-M1-ζ showed improved 
early tumor control relative to 4-1BB-ζ. Traces in (C) are median luminescence ± s.e.m. confidence 
interval. (D) Costimulatory PLCγ1 signaling is redundant to signaling provided by PI3K and Grb2, but 
complementary to TRAF signaling. (E) Addition of M1 to 4-1BB-ζ induced modest changes in Akt 
phosphorylation—which is not downstream of PLCγ1 signaling—relative to the changes in ERK1/2 
and NFκB phosphorylation—which are downstream of PLCγ1 signaling. CD4+ and CD8+ CAR T cells 
were pulsed once with Nalm 6 leukemia cells and fixed at various timepoints from 0 to 60 minutes. 
Phosphorylation of ERK1 and ERK2, NFκB, and Akt was assessed by flow cytometry. Data in (E) are 
mean and standard deviation of n = 3 replicates. 
 

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of C

alifornia San Francisco on D
ecem

ber 08, 2022

https://www.science.org/


Use of this article is subject to the Terms of service

Science (ISSN ) is published by the American Association for the Advancement of Science. 1200 New York Avenue NW, Washington, DC
20005. The title Science is a registered trademark of AAAS.
Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to
original U.S. Government Works

Decoding CAR T cell phenotype using combinatorial signaling motif libraries and
machine learning
Kyle G. DanielsShangying WangMilos S. SimicHersh K. BhargavaSara CapponiYurie TonaiWei YuSimone BiancoWendell A.
Lim

Science, Ahead of Print • DOI: 10.1126/science.abq0225

View the article online
https://www.science.org/doi/10.1126/science.abq0225
Permissions
https://www.science.org/help/reprints-and-permissions

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of C

alifornia San Francisco on D
ecem

ber 08, 2022

https://www.science.org/about/terms-service

	Decoding CAR T cell phenotype using combinatorial signaling motif libraries and machine learning

