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ScienceDirect
There is rapidly growing interest in learning how to engineer

immune cells, such as T lymphocytes, because of the potential

of these engineered cells to be used for therapeutic

applications such as the recognition and killing of cancer cells.

At the same time, our knowhow and capability to logically

engineer cellular behavior is growing rapidly with the

development of synthetic biology. Here we describe how

synthetic biology approaches are being used to rationally alter

the behavior of T cells to optimize them for therapeutic

functions. We also describe future developments that will be

important in order to construct safe and precise T cell

therapeutics.
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Introduction: synthetic biology meets
immunology
Cells are capable of remarkably sophisticated behavior. In

particular, immune cells exhibit a wide range of charac-

teristics that are well suited for therapeutic applications.

Research in cell biology and immunology has focused on

dissecting the molecular mechanisms underlying these

complex behaviors. However, there is now growing inter-

est in understanding how to engineer immune cells to

carry out controlled and redirected natural behavior and

new, non-natural behaviors. This shift comes from the

convergence of two exciting emerging areas of research.

First is the establishment that engineered immune cells

can be used as therapeutics to treat cancer or autoimmu-

nity. Second is the development of synthetic biology — a

field in which our understanding of molecular regulatory

systems has been combined with our increasing ability to
www.sciencedirect.com 
genetically modify and edit cellular systems. Thus this is

a particularly exciting time: our ability to rationally engi-

neer cells is exponentially growing, as are the potential

therapeutic applications of engineered immune cells.

Synthetic biologists seek to understand the design prin-

ciples of biological systems by dissecting, rebuilding and

repurposing natural and synthetic components [1–6]. The

biomedical relevance of engineered T cells demonstrated

in recent clinical trials is one reason why T cells are

emerging as an important model system for synthetic

biologists. In adoptive immunotherapy, T cells are isolat-

ed from blood, processed ex vivo, and re-infused into

patients [7��,8,9��] (Figure 1a). Although best known

for cancer therapy, the application of engineered T cells

includes and is not limited to treating intracellular patho-

gens and auto-immunity [10,11] (Figure 1b). Remarkably,

engineered T cells can safely persist for years in vivo
[12,13��]. Progress towards allogeneic, universal donor T

cells is underway, and so are methods of differentiating

induced pluripotent stem cells into T cells [14,15,49].

Both technologies are envisioned to significantly increase

the availability of therapeutic T cells.

T lymphocytes and their signaling systems are an ideal

test bed for synthetic engineering, thanks to decades of

rigorous basic research that has generated extensive

knowledge on T cell biology. The proliferative capacity

of T cells also makes it relatively simple to obtain large

numbers of cells for experimental and treatment pur-

poses. Transient or stable expression of synthetic mole-

cules in T cells can be achieved using multiple methods

(Box 1) [16–20,50–52]; genome engineering via CRISPR

or ZFN approaches carries immense potential for con-

struction of complex circuits involving re-wiring, modify-

ing, or disabling endogenous pathways. Finally, T cells

provide a rich context for intercellular interactions that is

amenable to engineering and can be used to explore key

parameters in cell–cell communication and dynamic pop-

ulation behaviors [21,22].

Thus the field of T cell engineering (synthetic immunol-

ogy) is rapidly growing. This review will discuss selected

examples T cell engineering and how this field might

expand in the future to enhance precision control over

therapeutic T cells.

Progress in rewiring T cells
Detection of disease signals through synthetic T cell receptors.
T cells normally use their T cell receptor (TCR) to detect
Current Opinion in Immunology 2015, 35:123–130
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Engineering T cells for diverse clinical needs. (a) Overview of adoptive immunotherapy using genetically modified T cells. (b) Current and future

applications for engineered T cells.
peptides presented by MHC molecules. To harness

T cells in treating disease, it is critical to be able to alter

T cells such that they recognize specific, selected disease

signals (e.g. a tumor antigen). A streamlined way to

modulate a T cell’s specificity for input signals is to

employ synthetic receptors, which are typically chimeras

of motifs and domains of natural or synthetic origin.

Synthetic TCRs, chimeric antigen receptors (CARs)

and antibody-coupled T cell receptors re-direct cells to

recognize disease associated ligands or antigens on target

cells [7��,9��,23��,24�] (Figure 2a). The first generation of

these synthetic receptors was developed nearly 20 years

ago and generally only contained signaling modules from

the TCR. The current generation of CARs and antibody-

coupled T cell receptors typically combine intracellular
Box 1

  •Retroviral Vectors [17]
  •Lentiviral Vectors [17]
  •DNA-based transposons [18]
  •Zinc-finger nuclease based gene editing 
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Future/In Dev

  •CRISPR/TALEN based gene editing [50-

Permanent Modification

Permanent Modification

Methods to engineer T cells.
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signaling modules from both the TCR and co-stimulatory

receptors. In this regard antigen-dependent activation of

T cells equipped with such receptors is independent of

MHC and costimulatory interactions. The single antigen

input activates two intracellular responses — both signal

1 (antigenic stimulation) and signal 2 (co-stimulation) of

T cell activation to produce desired outcomes such as

cytokine production, proliferation, and survival. With the

advent of current generation CARs containing costimu-

latory motifs, CAR T cells have shown strong in vivo
proliferation and durability required for therapeutic

efficacy. A tremendously exciting example of current

CAR therapy is the CD19 CAR T cell trials for treatment

of B cell cancers, which highlight the potential of cell-

based therapeutics to transform cancer therapy [7��].
•RNA transfection [16]

[19]

lidated

elopment

52] •Protein transfection (dCas9) [20]

Transient Modification

Transient Modification
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Diverse synthetic modules have been developed to reprogram therapeutic T cells. (a) Synthetic receptor designs for targeting disease antigens.

ITAM: immunoreceptor tyrosine-based activation motif, scFv: single chain variable fragment. (b) Methods for engineering T cells resistant to

immunosuppressive microenvironments. ITIM: immunoreceptor tyrosine-based inhibitory motif, ITSM: immunoreceptor tyrosine-based switch motif.

(c) Approaches to engineer migration/trafficking control. (d) Engineering safety switches and gated activation in gene modified T cells.
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Overcoming immune suppression. The immunosuppressive

conditions in tumor microenvironments remain a major

challenge in cancer immunotherapy. High levels of in-

hibitory signals in tumor microenvironments in the form

of cytokines (e.g. TGF-b and IL-4) and cell surface

co-inhibitory ligands (e.g. PD-L1) can globally suppress

effector T cell functions (Figure 2b). Additional synthetic

receptors have been developed to overcome such immu-

nosuppressive mechanisms. For example, a dominant

negative allele of the TGF-b receptor can abrogate

TGF-b mediated inhibition, rescue the survival defects

of T cells, and enhance their anti-tumor activities in

distinct mouse models [25,26]. In another example, a

chimeric receptor consisting of the IL-4Ra extracellular

domain and IL-7Ra transmembrane + intracellular

domains induces Th1 polarization in the presence of

IL-4, which normally suppresses Th1 effector functions.

T cells expressing this chimeric receptor showed en-

hanced immunity against IL-4-producing tumors, likely

due to the ability to continuously utilize tumor-derived

IL-4 to proliferate and sustain Th1 activities [27].

The concept of converting inhibitory signals into activat-

ing signals has also been explored to mitigate PD-L1

mediated immunosuppression. A chimeric receptor con-

sisting of the PD-1 extracellular domain and CD28 intra-

cellular segment converts co-inhibitory signaling of the

PD-1 pathway to co-stimulatory signaling of the CD28

pathway [28]. Primary human CD8+ T cells expressing

this chimeric receptor produced more effector cytokines

when stimulated with PD-L1+ target cells. The T cells

also retained granzyme B expression more effectively

after prolonged exposure to the PD-L1 ligand in vitro,

suggesting sustained anti-tumor functions.

Tumor-targeting T cells can also be engineered to con-

ditionally secrete cytokines that promote anti-tumor

functions and T cell survival in tumor microenviron-

ments. In such a controlled manner, toxicities that would

otherwise result from systemic administration of the

cytokine might be minimized. One example is antigen-

dependent production of IL-12 through an NFAT-re-

sponsive promoter that is activated upon tumor antigen

recognition by a CAR or TCR, although a recent clinical

study reveals the necessity for greater stringency to avoid

severe toxicities [29,30]. Increased stringency of IL-12

production could be achieved through administering a

synthetic small molecule to specifically regulate the on-

set, duration, and magnitude of IL-12 transcription [31].

As summarized in earlier work, IL-12 exerts multiple

advantageous immunomodulatory effects in tumor micro-

environments through engaging both the innate and the

adaptive immune components as well as altering the

extracellular matrix [32]. One major effect of IL-12 is

promoting neo-antigen recognition by the immune sys-

tem so that tumor cells that have evaded T cell recogni-

tion by loss of MHC or target antigen expression can be
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eliminated. Controlled production of other cytokines (e.g.

IL-2, IL-15) to promote T cell proliferation and survival

can be achieved with ribozyme-based switches respon-

sive to small molecules [33]. As co-stimulatory signals and

cytokines act in concert to regulate T cell functions, the

potential synergy among the synthetic devices discussed

in this section would be exciting to explore in adoptive

immunotherapy.

Re-directed migration of T cells. Migration of T cells can be

controlled using natural or synthetic G-protein coupled

receptors (GPCRs) recognizing soluble ligands of interest

to increase the T cells’ therapeutic potential (Figure 2c).

For example, preclinical tumor models showed enhanced

T cell migration to tumor sites and improved tumor

regression when CAR T cells expressed a natural GPCR

for the tumor-derived chemokine CCL2 or CXCR2

[34,35]. GPCRs engineered to recognize orthogonal li-

gands, known as receptors activated solely by a synthetic

ligand (RASSLs), have been developed using directed

molecular evolution [36]. Migration of human primary T

cells expressing one such RASSL was exogenously regu-

lated using the small molecule clozapine-N-oxide, an

inert metabolite of the FDA-approved drug clozapine.

Both in vitro and in vivo, RASSL-expressing T cells

migrated up concentration gradients towards the sources

of ligand [37�]. Similarly, Xu et al. designed a light-

responsive rhodopsin-CXCR4 chimeric GPCR for con-

trolled phototaxis of engineered T cells in vitro and in
vivo. In an OVA tumor model, light stimulation induced

significant intratumoral infiltration of antigen-reactive

cytotoxic T cells, along with enhanced T cell proliferation

and tumor regression [38�]. In summary, synthetic motili-

ty control systems using orthogonal small molecules or

light could promote infiltration and retention of engi-

neered T cells in tissues that lack T cell presence, such as

certain solid tumors and immune privileged sites.

It is worth noting the exciting development of synthetic

molecules specifically designed to trigger responses in

unmodified immune cells, such as engineered cytokines

and their mimics [39] as well as bi-specific antibodies [40].

Although most of these molecules are designed to interact

with natural immunoreceptors, further engineering could

be applied to yield highly specific, orthogonal pairs of

synthetic ligands and receptors, which in principle would

afford more precise exogenous control over engineered

immune cells [41].

Safety devices. A critical design aspect moving forward will

be incorporation of robust safety mechanisms to prevent

unrestrained activity of engineered cells. There have

been serious adverse effects associated with many thera-

peutic T cell clinical trials, including severe cytokine

release syndrome, and in some cases death due to cross

reaction with healthy tissues [7��,9��,23��]. A number of

approaches have been described to make engineered
www.sciencedirect.com
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T cells safer. Arguably the simplest strategy is the ‘kill

switch’ or ‘suicide gene’ that results in death of engi-

neered cells upon addition of an artificial stimulus. Prin-

cipal amongst these approaches is ectopic expression of

the herpes simplex virus (HSV) thymidine kinase that

causes DNA replication defects in engineered cells after

addition of the FDA-approved antiviral ganciclovir, and is

currently under investigation in a Phase I CAR T cell

trial. An alternative is ectopic expression of an engineered

protein designed to mediate inducible apoptosis. The

leading example is an inducible Caspase 9 system that has

also been tested in a Phase I trial. This FKBP-Caspase9

(iCasp9) fusion homo-dimerizes and stimulates the cell

intrinsic apoptotic pathway upon small molecule addition

[42]. Finally, cells may be engineered to express surface

receptors or epitope tags such that addition of antibodies

leads to depletion of therapeutic cells [43].

Each of these strategies has its associated challenges.

HSV thymidine kinase has documented immunogenicity

[44], which could allow rejection of therapeutic cells in

immunocompetent patients; a similar concern holds for

synthetic epitope tags employed for antibody depletion of

target cells. Alternatively, expression of native molecules

(such as EGFR) for antibody depletion strategies could

have unintended consequences in the cells of interest,

and may require significant engineering to render them

biologically inert.

The most severe limitation of ‘suicide gene’ strategies in

settings such as CAR T cell therapy, where the CAR is

constitutively ‘on’ in the presence of antigen, is the

requirement for 100% efficacy of the switch to avoid

toxicity issues. Even small numbers of cells that inacti-

vate the kill switch or evade deletion could expand and

cause significant toxicity. Indeed, in a phase I trial of

iCasp9 expressing cells, treatment with the small mole-

cule dimerizer led to only �95% depletion of gene

modified cells [42].

An alternative approach would be to design cells that are

‘off’ in the basal state and exhibit controlled gating of

activation (‘activation switches’, Figure 2d). Here cells

could be rendered therapeutically inert until addition of

an activating signal such as a small molecule, or detection

of specific environmental antigens such as a defined tissue

localization (Wu et al., in press).

Alternatively, improved safety could be engineered with

negative regulatory systems that mitigate activity or en-

hance specificity. For example, Fedorov et al. have

reported the construction of inhibitory CARs (iCARs)

that contain domains from the co-inhibitory receptors

CTLA-4 or PD-1 [45�]. In T cells expressing a conven-

tional active CAR targeting Antigen A and an iCAR

targeting Antigen B, ligation of the iCAR ‘overrides’

the active CAR and allows discrimination between cells
www.sciencedirect.com 
expressing Antigen A alone versus both Antigens A and B.

Extending this approach to more complex synthetic cir-

cuits could allow construction of T cells with exquisitely

specific behaviors and feedback control that allow defined

periods of activation, multi-antigen gating, among others.

Analogously, other groups have begun constructing CARs

with tandem extracellular recognition domains [46].

These and other combinatorial recognition CARs might

exhibit more specific antigen recognition, or could be

used to reduce the chance of tumor escape via target

antigen loss or mutation.

Future needs: the promise of synthetic T cell
circuits
Numerous clinically desirable behaviors would be useful in

next generation therapeutic T cells (Figure 3a). Desired

properties include, but are not limited to, increased tumor

recognition specificity, directed migration/trafficking, en-

hanced persistence/survival/differentiation, resistance to

immunosuppressive microenvironments, and recruitment

of endogenous anti-tumor response. To date current

approaches to engineering T cells have been relatively

simplistic, involving single transgenes or relatively static

approaches that address a single challenge detailed above.

We propose that going forward it will be vital to develop a

diverse toolbox of dynamically regulated engineered beha-

viors and functionalities that can be rapidly integrated to

generate customized cell therapies for diverse applications.

A critical challenge in cell based therapies is either

insulating engineered circuits from the endogenous re-

sponse, or understanding native behavior sufficiently to

integrate the desired functionality. This is particularly

relevant for T cell engineering because of developmental

plasticity and the immense impact that environmental

factors play in determining T cell fate, function, and

localization [47,48]. Ultimately, we must develop tools

for independent control of multiple T cell functions,

including but not limited to survival, proliferation, traf-

ficking, targeted cytolysis or cytokine production, differ-

entiation, and maintenance of cell fate (Figure 3b).

Designing artificial circuits for these capacities will re-

quire careful and systematic dissection of native systems,

particularly given the interconnectedness of many of the

parameters described above [47,48].

Another significant need is development of multi-input

control that allows for complex Boolean logic gating,

analogous to the way cells integrate diverse stimuli to

encode downstream outputs (Figure 3c). Such combina-

torial sensing could aid in discriminating healthy tissue

from cancer, or limit production of secondary outputs

(such as cytokines) to specific tissues to avoid side-effects

of systemic production.

Along these lines, it will be critical to move beyond

constitutive transgenes and/or reliance upon endogenous
Current Opinion in Immunology 2015, 35:123–130
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Figure 3
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Looking forward: design principles for next generation therapeutic T cells. (a) Desirable overall clinical properties for next generation therapeutic

T cells. (b) Cellular activities to be independently controlled by user for enhanced therapeutic cell safety and precision. (c) Multi-input systems

required for complex Boolean logic and sophisticated decision making. (d) Enhanced ligand/antigen density discrimination to distinguish normal

versus disease target cells via tuning dose responses in engineered T cells. (e) Engineered control of T cell response duration and state-switching.
pathways to regulate duration and intensity of pro-

grammed behaviors. Incorporation of classical synthetic

biology motifs such as positive feedback for amplification,

negative feedback for limiting duration, or bistable

switches to promote mixed population states

(Figure 3d,e) should allow for rational control of thera-

peutic behaviors, both temporally and spatially [1–6].
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A primary technical limitation to application of complex

circuits lies in the ability to deliver large genetic payloads

(3–5+ transgenes and promoters) reproducibly at high

efficiency. Transposon-based approaches may prove

superior to viral vectors in this regard due to larger

payload delivery; alternatively, CRISPR-based homolo-

gous recombination could overcome this hurdle. Barring
www.sciencedirect.com
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advancement of this technology, it may also be possible to

deploy CRISPR to selectively rewire endogenous signal-

ing pathways by tweaking promoter strength/responsive-

ness, introducing destabilizing mutations, or creating

dominant negative alleles in engineered cells.

In summary, T cells are one of the most exciting plat-

forms for cellular engineering and development of mam-

malian synthetic biology tools. Advancing clinical efficacy

of next-generation cell therapies will necessitate the

development of a diverse toolkit that allows independent

user control of multiple cellular behaviors and function-

alities. Building upon foundational knowledge of the

native behavior of T cells, this may ultimately allow

rational design of customized therapeutic cells for a

diverse range of unmet clinical needs.
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