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To achieve high biological specificity, protein kinases and

phosphatases often recognize their targets through

interactions that occur outside of the active site. Although the

role of modular protein–protein interaction domains in kinase

and phosphatase signaling has been well characterized, it is

becoming clear that many kinases and phosphatases utilize

docking interactions — recognition of a short peptide motif in

target partners by a groove on the catalytic domain that is

separate from the active site. Docking is particularly prevalent

in serine/threonine kinases and phosphatases, and is a

versatile organizational tool for building complex signaling

networks; it confers a high degree of specificity and, in some

cases, allosteric regulation.
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Introduction
Biochemists dating back to Emil Fischer have tradition-

ally assumed that the substrate specificity of an enzyme

was determined primarily by stereochemical complemen-

tarity with its active site. Although protein kinase and

phosphatase active sites do possess preferred target phos-

phorylation or dephosphorylation sequences, these

preferences are not stringent enough; often they alone

cannot explain in vivo specificity. In addition to substrate

target site preferences, many protein kinases and phos-

phatases use dedicated protein–protein interaction sur-

faces (Figure 1a). One common strategy is to use modular

protein–protein recognition domains, such as SH2 and

SH3 domains — numerous kinases contain such domains

fused to their core catalytic domain. However, a second

strategy is to utilize docking interactions — interactions

involving binding surfaces of the catalytic domain but

distinct from the catalytic active site. These docking

grooves bind to short peptide docking motifs that are
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separate from the substrate motif that is chemically

modified by the enzyme. These two supplemental recog-

nition strategies are not mutually exclusive (Figure 1b).

The development of these alternative modes of recogni-

tion provides a simple way to meet the ever-increasing

evolutionary requirement for specificity in protein–

protein recognition within complex networks. Related

kinases and phosphatases, for example, can develop

slightly different docking grooves without compromising

the strict stereochemical requirements for efficient

catalysis performed at the active site (Figure 1c) [1].

In this review, we will focus on outlining our current

understanding of docking interactions in both protein

kinases and phosphatases. Although docking was origin-

ally discovered as a mechanism to increase enzyme–

substrate specificity, docking interactions can also govern

the binding of kinases and phosphatases to each other and

other effectors. There are now numerous well-character-

ized examples of both kinases and phosphatases that

utilize docking interactions. The majority are serine/

threonine phosphatases, such as PP1 and calcineurin,

and serine/threonine protein kinases, including CDK–

cyclins, MAP kinases, PDK1 and GSK3. However, at

least one protein tyrosine kinase (Csk) has recently been

shown to also utilize docking.

Two solutions for increased network
specificity: modular recognition domains and
docking
The separation of partner recognition and partner mod-

ification in signaling circuits based on reversible phos-

phorylation is an evolutionarily advantageous process. It

enables a high degree of transferability of protein recog-

nition independent of catalytic function [1]. This separa-

tion appears to have taken two independent routes during

the evolution of complex signaling pathways. On one

hand, dedicated interaction domains separate from the

catalytic domain are often used to establish links with

other signaling protein partners. Examples of this include

the non-receptor protein tyrosine kinases and phospha-

tases that contain, for example, SH3 and SH2 domains,

such as the Src, Abl, Hck and Csk protein kinases and the

SHP protein phosphatases [2]. On the other hand, kinase

and phosphatase domains can also acquire surface grooves

— referred to as docking sites — that are capable of

establishing specific connections via small peptide motifs

residing in interaction partners. Although domain-

mediated and docking interactions are distinct, they serve

a similar functional purpose in targeting catalytic domains

to particular substrates, partners and cellular locations.
www.sciencedirect.com
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Figure 1

Comparison of interactions mediated by modular domains and docking grooves for protein kinases and phosphatases. (a) Separation of catalytic

function from protein–protein recognition. A kinase or phosphatase catalytic domain, in addition to the substrate preferences of the active site,

can acquire additional protein–protein recognition modes through a dedicated surface called the docking groove (orange) or through a dedicated

modular protein–protein interaction domain (blue). (b) Substrates or other protein partners in turn can acquire simple peptide motifs that will

interact with the docking groove or the globular protein recognition domain. (*It is also possible that substrates or kinase/phosphatase partners

acquire the globular domain and the kinase/phosphatase contains the globular domain motif.) This panel demonstrates three protein recognition

interactions that have been identified for protein kinases and phosphatases. (c) Docking motifs can direct the specificity of enzymes. Protein

kinase and phosphatase active sites generally have limited substrate recognition capabilities. Although a relatively large array of substrates may

fit the stereochemical requirements for catalysis, those with appropriate docking motifs will be selected through interactions mediated by the

docking groove. (d) Like certain modular-domain-mediated interactions, certain docking-motif-mediated interactions can be phosphorylation

dependent. (e) Docking interactions can also participate in allosteric regulation of kinase or phosphatase domain catalytic activity by directly

modulating the catalytic domain structure. Modular domains often allosterically regulate their catalytic domains via autoinhibitory interactions.

www.sciencedirect.com Current Opinion in Structural Biology 2006, 16:676–685
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They can govern protein association in a phosphorylation-

dependent manner, and can influence kinase and phos-

phatase activity through allosteric mechanisms as well

(Figure 1d,e).

Interestingly, enzymes that regulate serine/threonine

phosphorylation and those that regulate tyrosine phos-

phorylation appear to have chosen different strategies for

building supplemental specificity interactions (Figure 2).

Analysis of the human genome reveals that the majority of

serine/threonine kinases and phosphatases do not contain

any recognizable modular recognition or targeting

domains (including protein–protein, protein–lipid and

transmembrane motifs). Conversely, most examples of

docking interactions have been identified in serine/threo-

nine kinases and phosphatases [3]. In contrast, the major-

ity of tyrosine kinases and phosphatases contain one or

more recognizable modular targeting elements outside of

the catalytic domain. Overall, these observations are

consistent with a model in which serine/threonine phos-

phorylation, which is thought to have evolved earlier as a

signaling system, has primarily utilized a docking inter-

action strategy for achieving higher levels of partner

discrimination, whereas the later-evolving tyrosine phos-

phorylation systems began to utilize the strategy of

recombination with multiple alternative modular inter-

action domains. One possible exception to this rule is the

tyrosine kinase Csk. New work suggests that the inter-

action of Csk with its substrates Src or Yes is mediated

through a docking groove, indicating that modular

domain and docking peptide interactions might co-func-

tion in some tyrosine kinases [4,5].

Identifying linear recognition elements
Most domain-mediated and docking interactions recog-

nize short linear recognition elements rather than folded

globular partners. These linear motifs are short, between

three and ten amino acids, of which usually just a few

residues are important for function. Linear-motif-

mediated protein association tends to be more transient

in nature and therefore is ideal for signaling networks.

Whereas globular domains mainly arise by gene duplica-

tion, linear motifs, because of their short length, can arise

convergently [6].

The small size of linear motifs makes bioinformatic

identification and analysis challenging. The identifica-

tion of globular domains (SH3, SH2, PTB, WW, PDZ,

etc.) in signaling proteins is now straightforward using

resources such as SMART and Pfam [7,8]. Efforts are also

underway to catalogue linear motifs. The short length of

these motifs makes them difficult to detect through

sequence comparison; however, a set of proteins that

all interact with a certain protein will normally share

common features (Figure 3). The DILIMOT and SLiM-

Disc programs, for example, can find statistically over-

represented motifs in non-homologous sequences that
Current Opinion in Structural Biology 2006, 16:676–685
bind to a certain kinase or phosphatase [9,10]. This

approach successfully rediscovered known motifs and

predicted several others using genome-scale interaction

data sets [11��].

The small size of docking motifs potentially enables

experimental screening of focused or randomized peptide

libraries to discover novel docking peptide sequences.

Docking-peptide-mediated interactions, however, are

often weak and might function synergistically with inter-

actions mediated by the active site. To overcome low-

affinity binding, synthesis of multiple peptides on mem-

branes was used to map synergistic components of weakly

interacting protein–protein motifs for MAP kinases and

tyrosine phosphatases [12,13].

Docking interactions in protein
phosphatases
The serine/threonine phosphatase protein phosphatase 1

(PP1) has evolved effective catalytic machinery, but lacks

strong substrate specificity in its active site. PP1 finds its

targets via a large number of regulatory subunits, which

influence the activity and cellular localization of the

phosphatase. To date, more than 50 PP1–protein inter-

actions have been identified [14]. Many of the PP1-

interaction partners possess one or two of the following

sequence motifs: FxxRxR or RVxF [15]. Co-crystalliza-

tion of PP1 with a synthetic peptide encompassing the

RVSF sequence established the RVxF motif as a con-

served binding sequence that associates with a hydro-

phobic pocket on the surface of the PP1 catalytic subunit

[16,17�]. Recently, a systematic analysis of structural

elements that mediate the binding specificity of PP1-

interacting proteins proposed a refined consensus for

high-affinity PP1 ligands [18��]. Application of the results

of this study to protein sequence database searches

enabled the authors to predict PP1-interaction partners

with high accuracy. Furthermore, binding studies with

several PP1 partners and mutational analysis have demon-

strated that differences in peptide–protein interactions

dictate the affinity of PP1 for cellular regulators and

control the dynamic physiological regulation of PP1 func-

tions in the cell [19].

Calcineurin (known as protein phosphatase 2B, PP2B) is a

serine/threonine phosphatase whose substrate selectivity

is also determined in part by docking interactions. Calci-

neurin plays an important role in T-cell activation by

directly regulating the activity of NFAT (nuclear factor of

activated T cells) transcription factors via dephosphoryla-

tion. Calcineurin–NFAT signaling depends on the tran-

sient and reversible recognition of the N-terminal

regulatory domain of NFAT by calcineurin. This inter-

action is mediated by a conserved PxIxIT motif present

in NFAT proteins and a docking groove on the surface of

calcineurin [20]. Peptide cross-linking, in silico docking

and experimental analysis later revealed the structural
www.sciencedirect.com
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Figure 2

Distribution of non-catalytic targeting domains in human kinases and phosphatases. Human (a) kinases and (b) phosphatases containing 0, 1

or �2 types of recognizable targeting domains (in addition to the core catalytic domains) are shown. This analysis demonstrates that tyrosine

kinases and phosphatases tend to use more targeting elements compared to serine/threonine kinases and phosphatases. Furthermore, members

of certain serine/threonine kinase groups (e.g. the CMGC group) appear to entirely rely on the specificity of the kinase catalytic domain (they

lack any additional, identifiable domains). Interestingly, this group includes kinase families such as MAPKs, CDK–cyclins and GSK3, for which

many docking-groove- mediated interactions have been described. TKL (tyrosine kinase like) is a diverse group of families that resemble both

tyrosine and serine/threonine kinases. Kinase sequences were obtained from the human kinome [50] and analyzed using the SMART database

[7]. For phosphatases, only proteins fully annotated in SMART were utilized. The analysis involved a representative sample of about 270 known

kinases and 65 phosphatases, corresponding to approximately half of the human kinome or phosphatome. Only intracellular targeting domains

were counted in this analysis. Non-catalytic domains found include: protein–protein interaction (SH3, SH2, PDZ, SAM, ANK, FHA, Ig like, IGc2,

FN3); membrane targeting (transmembrane regions, PH, PX, C2, B41); and miscellaneous (PBD, RBD, RGS, CNH, HR1, RhoGEF, CaM, IQ, C1,

PB1, IG, DCX, TPR, LRR, UBA, RING, FCH, DEATH, RWD, CARD, GS, LIM).
basis of calcineurin–PxIxIT docking motif interaction,

and suggested an unexpected evolutionary parallel with

the PP1–RVxF motif interaction [21�] (Figure 4). Finally,

the importance of calcineurin–PxIxIT motif docking has
Figure 3

Schematic of a linear motif discovery strategy. Large-scale interaction maps

with multiple interactions are grouped. Domains and homologous regions a

pattern-discovery algorithms. Finally, a list of motifs is ranked by their proba

Adapted from [11��].

www.sciencedirect.com
also been established in other targets; the phosphatase

binds to a K+ channel through a consensus PxIxIT motif,

which is indispensable for the regulation of channel

activity [22].
are probed for interacting subsets of interest. Partners of proteins

re identified and subsequently removed before running extensive

bilities. Predicted motifs are depicted as colored boxes.

Current Opinion in Structural Biology 2006, 16:676–685



680 Catalysis and regulation

Figure 4

Divergent evolution of a docking groove. PP1 and calcineurin are two serine/threonine phosphatases that have a homologous catalytic domain,

but interact with different sets of proteins through a related docking groove. The similar location but clearly different topology of the RVxF and

PxIxIT motif docking grooves on these two phosphatases suggests divergent evolution. The positions of Mn ions near the active site are

shown as spheres in magenta and the middle panel shows an RVxF motif peptide from the PP1–MYPT1 complex crystal structure in red [17�].

The calcineurin PxIxIT motif docking groove has been mapped in [21�].
Docking interactions in protein kinases
In mitogen-activated protein kinase (MAPK) networks,

extracellular input leads to the phosphorylation and acti-

vation of a three-tiered kinase cascade (MAPKKK-

MAPKK-MAPK), which in turn stimulates a specific

transcriptional response. Within the signaling cascade,

the MAPKKK must first recognize the correct MAPKK

and phosphorylate it, and the activated MAPKK in turn

must locate and activate its cognate MAPK. Structural,

biochemical and genetic data have all shown that docking

motifs from interacting proteins are necessary for MAPK

to bind to and phosphorylate its targets. MAPK docking is

ubiquitous, having been demonstrated in yeast and mam-

mals [23]. The best-characterized MAPK-docking motifs

are the so-called D-motifs. The consensus D-motif [(R/

K)1–2-(X)2–6-F-x-F; where F denotes a hydrophobic resi-

due] is found in activators (MAPKKs), negative regulators

(phosphatases) and various substrates. MAPK docking

occurs in all mammalian MAPK families (ERK, p38

and JNK) and crystal structures now exist for most of

these MAPK docking complexes [24–27]. Comparison of

the MAPK docking interactions from yeast to humans

reveals a conserved mechanism of interaction, whereby

basic residues of the D-motif bind to a negatively charged

surface area (CD-site) and the hydrophobic residues bind
Current Opinion in Structural Biology 2006, 16:676–685
to a hydrophobic groove on the MAPK (F-x-F groove).

However, there is also a second class of MAPK docking

(found only in ERK signaling), whereby a so-called DEF

motif with an FxFP consensus sequence binds to a

separate MAPK surface [28�,29�,30]. Hydrogen-exchange

mass spectrometry (HXMS) data have located the DEF-

docking groove near the kinase active site. FxFP motif

binding to ERK2 is coupled to the positioning of its

activation loop; it has been demonstrated that the phos-

phorylated MAPK binds this docking motif better than

the inactive kinase [29�]. Kinase docking also occurs at

other levels in the MAPK cascade. The C-terminal region

of mammalian MAPKKs (which contains a so-called DVD

motif) is necessary for interacting with and discriminating

between various MAPKKKs [31]. There is also evidence

that MAPKKK–MAPKK docking occurs in yeast [32].

Similar to the domain-mediated recognition of phos-

phorylated peptides (e.g. SH2, PTB, 14-3-3 and FHA

domains), docking motifs can also act as regulatory ele-

ments when the docking interactions are themselves

phosphorylation dependent. 3-phosphoinositide-depen-

dent kinase-1 (PDK1) interacts with several downstream

AGC kinases that contain a conserved docking motif

known as the PDK1-interaction fragment (PIF) [33,34].
www.sciencedirect.com
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PIF motifs, however, must be phosphorylated before they

bind effectively to the PIF pocket located on PDK1 (PIF

motif: FxxFS/TF/Y, where S/T has to be phosphorylated)

[35]. Therefore, downstream AGC kinase substrates must

be primed by phosphorylation before interaction with and

phosphorylation by PDK1. A similar priming event is

required for phosphorylation of some substrates by glyco-

gen synthase kinase-3 (GSK3), which is part of the insulin

signaling pathway. GSK3 substrates must be phosphory-

lated on a residue that is C terminal to the serine/threo-

nine site to be modified by GSK3. This priming

phosphorylation motif binds to a phospho-recognition

docking groove adjacent to the active site of GSK3

[36]. The priming phosphorylation scheme observed in

the GSK3 and PDK1 pathways provides a mechanism for

making signal processing dependent on catalytically dis-

tinct phosphorylation events, thereby increasing the spe-

cificity and complexity of control.

The activities of cyclin-dependent kinases (CDKs) are

governed by the cyclins and linked to phases of the cell

cycle. However, cyclins not only serve as activatory sub-

units for the kinase but also may function in substrate

recognition. Many CDK substrates contain an RxL or KxL

docking motif that is remote from the site of phosphoryla-

tion. Interestingly, the RxL-docking groove is located not

on the kinase but on the interacting cyclin, providing a

slightly different mechanism of substrate recognition,

whereby the cyclin functions as an adaptor [37,38�].

Allostery versus tethering
A fundamental question is how docking motif binding

influences kinase and phosphatase activity: is it simply

tethering or is allostery also important? Overall, the

primary role of docking interactions appears to be tether-

ing. However, there are a few cases in which docking

interactions play an important role in altering protein

conformation and allosterically regulating activity. The

binding of PIF motifs to PDK1 increases kinase activity

four- to six-fold [33,34]. Studies of MAP kinases, how-

ever, suggest that the main function of D-motif docking

interactions is tethering the kinase to partners; the Fus3

MAPK structure, for example, changes very little upon

binding to D-motif peptides from various interaction

partners [39��]. In one example, however, the activity

of the same MAPK is allosterically activated by a peptide

whose binding site includes the docking groove for D-

motifs [40�]. A recent structure of ERK2 in complex with

a D-motif also demonstrates that peptide binding to the

docking groove can have long-range effects, including

reordering of the kinase activation loop [27] (Figure 5).

Hydrogen-deuterium exchange data have also indicated

that some flexibility is induced in the activation loop of

p38 upon D-motif binding [29�].

In the case of phosphatases, binding of an RVxF motif to

PP1 does not change the structure of the phosphatase
www.sciencedirect.com
domain. Similarly, allosteric effects of docking peptide

binding on the catalytic activity of calcineurin have not

been found. The catalytic domains of these two phos-

phatases may be too rigid and docking interactions appar-

ently cannot augment structural changes at the active site.

Therefore, it is likely that, in these examples, the loca-

lization or tethering of the effector phosphatase domain to

the protein partner is sufficient to explain the physiolo-

gical roles of docking. However, in the case of calci-

neurin–NFAT binding, it is possible that the

association of the phosphatase with its PxIxIT docking

peptide itself is controlled by an allosteric site. This site,

bound by some small-molecule inhibitors of calcineurin–

NFAT association, is separate from both the docking

groove and the active site [41].

Specificity of MAP kinase docking
interactions
Although docking provides a simple way to generate new

connectivity in circuits relying on kinase or phosphatase

activity, the recurrent use of the same surface grooves

presents a new problem: how can docking surfaces

encode specific information about kinase or phosphatase

interactions in the context of many related peptide motifs

(Figure 6)? Signaling events regulated by MAP kinase

docking interactions display a remarkable degree of fine-

tuned specificity: simple sequence variation in yeast

D-motifs can influence signal flow between distinct but

closely related MAPKs and their interaction partners, and

it appears that induced-fit recognition allows docking

peptides to achieve discrimination by exploiting subtle

differences in kinase flexibility [39��].

For mammalian MAPK systems, substrates are phos-

phorylated by specific subsets of MAPKs depending on

the number and sequence of the docking motifs. DEF

and D-motifs form a modular system in which a different

arrangement of these two docking motifs on c-Jun and

JunD transcription factors governs the differential

response of these two ERK2 targets upon EGF stimula-

tion [30]. In another study that highlighted the restrictive

and selective nature of docking interactions, discrete

ERK2 docking groove mutations differentially affected

the binding and inactivation of two different tyrosine

phosphatases. Importantly, some of these mutations still

allowed efficient phosphorylation of ERK2 by MEK1/2 (a

MAPKK) [42].

Docking and drug design
The prevalence of protein kinases and phosphatases that

are involved in disease has led to intensive efforts to

develop specific inhibitors for use as therapeutics. Most

kinase and phosphatase inhibitors currently target active

sites. However, protein interactions, as outlined earlier,

also play an essential role in linking kinases and phos-

phatases with their signaling partners. Thus, blocking

docking interactions holds promise as an alternative
Current Opinion in Structural Biology 2006, 16:676–685
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Figure 5

Mechanisms by which docking motifs can influence MAPK signaling. (a) The ‘tethering’ model: in the case of the yeast MAPK Fus3 and, in some

cases, the mammalian MAPK ERK, docking peptide binding creates no obvious changes in structure or kinase activity. Structural depiction

of the MAPK Fus3 in the apo state (gray) and bound to the D-motifs of its activator, Ste7 (dark blue), and its negative effector, the phosphatase

Msg5 (light blue) [39��]. Docking peptides are shown in green. (b) Long-range conformational changes induced by D-motif docking: the ‘allosteric’

model. Peptide binding to the MAPK docking groove induces an allosteric effect, including reordering of the activation loop. These conformational

changes are postulated to affect MAPK activity (the positioning of the activation loop is also controlled by phosphorylation and thus relates

strongly to enzymatic function). Structural alignment of the mammalian MAPK ERK2 with (red) and without (gray) a D-motif peptide from the

PTP phosphatase [27]. The activation loop in the ERK2–PTP D-motif complex moves into a new position that more closely matches the conformation

in phosphorylated (and active) ERK2.
strategy for selectively inhibiting kinase and/or phospha-

tase signaling. For example, cell-permeable peptides

containing docking motifs were shown to selectively

modulate MAPK and PP1 activity in vivo [43–45].

Another approach to docking-based drug design is using

high-throughput experimental or computational struc-

ture-based screens to identify small chemical compounds.

The existence of a specialized substrate-targeting

mechanism in calcineurin–NFAT signaling enabled the

identification of small-molecule inhibitors that act by
Current Opinion in Structural Biology 2006, 16:676–685
interfering with phosphatase–substrate docking rather

than with the calcineurin catalytic site [46��,47]. As

three-dimensional structures of docking groove surfaces

on kinases and phosphatases become available, structure-

based screens will be increasingly practical [48]. Taking

advantage of the recently identified ERK MAPK docking

surface, a computer-aided drug design study identified

novel small-molecule ERK inhibitors that showed a dose-

dependent reduction in the proliferation of several cancer

cell lines [49]. Moreover, downstream branches of ERK

signaling that are based on DEF- or D-motif-mediated
www.sciencedirect.com
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Figure 6

Specificity and evolution of MAPK docking networks. (a) Divergent evolution of MAPK–D-motif interactions. The D-motif–MAPK interactions of two

yeast MAPKs demonstrate how a common and highly conserved docking groove can dictate interaction specificity. Ste7, a MAPKK, activates

two related yeast MAPKs: Fus3 and Kss1. This interaction is mediated by a D-motif that can bind to Fus3 as well as to Kss1 (promiscuous). A separate

D-motif of the substrate Far1 is specific for Fus3 (selective). Promiscuous and selective peptides bind the docking groove in conformationally

distinct modes and, interestingly, it is the sequence of the intervening region between the basic (R) and the F-x-F motif that appears to influence

the binding mode. Insertion of two proline residues into this region renders a promiscuous D-motif MAPK selective [39��]. (b) Convergent evolution

of MAPK–D-motif interactions. Many Fus3-interaction partners bind to the Fus3 docking groove. Two proteins, the Far1 substrate and the Ste5

scaffold, contain Fus3-selective docking motifs that bind the docking groove in what appears to be a similar conformation: they both interact

with the negatively charged CD-site using an arginine, use a leucine to bind the F-x-F groove and have a proline in a pivotal position that

favors a Fus3-specific peptide conformation [39��,40�]. However, these motifs are clearly unrelated: the orientations of the peptide chains are

opposite (note that the N-C orientation is different). It appears that both proteins evolved a similar but unrelated solution to interact with Fus3 in a

specific manner, suggesting an example of convergent evolution for docking motif design.
docking can be selectively inhibited without blocking

total pathway activity [28�]. These studies demonstrate

that interference with docking interactions is a viable

alternative to the direct catalytic inhibition of kinase or

phosphatase activity.

Conclusions
A growing number of substrates as well as many regulator

proteins have been shown to bind kinase or phosphatase

catalytic domains through docking groove interactions.

Docking-mediated interactions are particularly prevalent

in serine/threonine kinases. The search for new docking

peptide sequences and their corresponding protein–pro-
www.sciencedirect.com
tein interaction surfaces on kinase/phosphatase domains

is an active area of research. Computational approaches,

in combination with systematic experimental analysis,

will aid the identification of new examples of protein–

protein interactions mediated by docking. The next

challenge is to discover the molecular principles behind

the specificity mediated by individual docking grooves

and their corresponding peptide motifs. This new knowl-

edge will be helpful in the design of biological tools to

modulate protein–protein interactions in vivo and in

elucidating the specific roles of this ubiquitous class of

enzymes in diverse cellular processes. Such studies will

set the stage for the selective regulation of kinase/phos-
Current Opinion in Structural Biology 2006, 16:676–685
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phatase network activity by small-molecule inhibitors,

whereby the focus would be on targeting connections

rather than catalytic activity.
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