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A challenge in biology is to understand how complex molecular networks in the cell execute sophisticated
regulatory functions. Here we explore the idea that there are common and general principles that link network
structures to biological functions, principles that constrain the design solutions that evolution can converge
upon for accomplishing a given cellular task. We describe approaches for classifying networks based on
abstract architectures and functions, rather than on the specific molecular components of the networks.
For any common regulatory task, can we define the space of all possible molecular solutions? Such inverse
approaches might ultimately allow the assembly of a design table of core molecular algorithms that could
serve as a guide for building synthetic networks and modulating disease networks.
In the postgenomic era, we are accumulating a vast amount of

data describing the array of molecules in living cells and their

web of interactions. Yet even as more and more genomes, pro-

teomes, and network maps appear, one of the remaining great

challenges is to make sense of all the data to answer the funda-

mental question of how complex molecular networks are able to

robustly and accurately carry out their physiological functions.

Do we need to take into account all of this information to com-

prehend the mechanism, or are there more salient functional

features which we can focus on, and, conversely, other details

that we can place less emphasis on? Have such networks

evolved as arbitrary and unique solutions, or is there an under-

lying logic and pattern to how and why networks have the

structures that they have? These questions of mapping network

structure and function are at the very heart of understanding

the mechanistic relationship between genotype and phenotype

at the cellular level.

Do Simplifying Design Principles Underlie Complex
Biological Networks?
Here we explore the question of whether theremight exist simpli-

fying design principles that underlie the structure and evolution

of complex cellular regulatory networks. Theword design is often

considered taboo within the biological community, given its

close association with the term intelligent design—the notion

that living systems were purposefully constructed by an intelli-

gent force rather than through a random, evolutionary process.

We argue that there is an important scientific role for considering

design principles and how they influence biological systems.

After all, biological systems have evolved under selective pres-

sures to perform certain functions that increase organismal

fitness. At the same time, there are physical constraints that limit

the ways in which the tool kit of available biomolecular compo-

nents can be used to solve these functional needs (i.e., limits
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on diffusion, catalytic or gene expression rates, binding speci-

ficity, etc.). Thus it seems critical to ask, for given functions,

are there ‘‘better’’ or more accessible designs for how to harness

molecular components to perform particular regulatory func-

tions? If so, then such ‘‘good’’ designs would be likely attractors

for the search process of evolution—if one could hypothetically

replay evolution over repeatedly, one would observe conver-

gence to these same archetypal classes, even if the detailed

molecular implementations were very different. Thus when we

use the term design principles, we are referring to the underlying

landscape within which evolution can explore, and not to the

explicit path or process by which a particular complex system

came about.

Another way to phrase these questions is to ask whether there

are meaningful ways to abstract diverse and complex regulatory

networks to understand the common patterns for how they

achieve a particular function. As an analogy, take the example

of a chair. We can find many examples of chairs throughout

cultures and history that differ greatly in their details, but at

some abstract level, they all share low-resolution structural

commonality that is dictated by how the laws of physics can

be used to solve the functional problem of supporting a seated

human being (Figure 1A). Similarly, at a molecular scale, in

machines such asDNApolymerases, we can recognize common

abstract organizational similarities that persist across different

examples, in spite of wide sequence variation. These similarities

are again linked to the physical constraints on how to perform

this particular class of molecular scale mechanical work

(Figure 1B). These two analogies are meant to be simply illustra-

tive, and there are many other examples one could use to illus-

trate the concept of common design principles.

Today, much effort is focused on understanding how regula-

tory networks allow a cell to process information in complex

ways. Thus, a reasonable question is whether we can recognize
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Figure 1. Underlying Design Principles
(A) Mechanical devices often show core design
principles intimately linked to their function. For
example, chairs, despitemany differences in detail
and in origin, usually share common features
that are linked to the physical requirements of
supporting a seated human being.
(B) Molecular machines also often shown common
features, as illustrated by the common organi-
zation of diverse DNA polymerases. (Panel is
adapted from Steitz, 1999.)
(C) Ways in which complex cellular circuits might
be abstracted into simpler core networks. A
complex network could potentially be composed
of several subnetwork modules, each with a
simpler core function.
(D) Three interlinked ways to explore the existence
of design rules and constraints: physical/bio-
chemical constraints should prescribe the range
of possible network solutions to a functional
problem; common functional network solutions
are expected to be enriched in natural evolutionary
examples; synthetic molecular networks should
also obey design rules.
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analogous core organizational rules in cellular networks that are

dictated by function. In macroscopic information processing

systems, such as electronic circuits or computer programs,

there are common architectures and algorithms that are used

to solve common problems (Figure 1C). Might this also be the

case for cellular information processing systems, and if so,

how do we go about recognizing them?

An attractive working concept that a number of researchers

have converged upon is the idea of a tool kit of elemental net-

work motifs, each of which can perform common core functions

(Buchler et al., 2003; Alon, 2007; Ma et al., 2009; Sneppen et al.,

2010; Tyson and Novák, 2010). These motifs could potentially

serve as the core framework or elemental building blocks to

construct complex cellular functions. This universe of coremotifs

might be relatively finite, given the physical constraints on the

biological molecules used to build them. Although hypothetical,

one can easily imagine how such a set of core functionalmodules

could be extraordinarily valuable in deconstructing the logic and

mechanism underlying diverse classes of complex biological

processes, including cell signaling, development, and metabo-

lism (Hartwell et al., 1999; Tyson et al., 2001; Milo et al., 2002;

Wagner, 2005; Ma et al., 2006, 2009; Novák and Tyson, 2008;

Sneppen et al., 2010; Peter and Davidson, 2011a; Stephens

et al., 2011; Bar-Even et al., 2012; Kholodenko et al., 2012).

There are several ways to explore the validity of this kind of

network organizational framework (Figure 1D). If the premise

is true that there are a finite number of ways to harness biochem-

ical systems to execute a particular regulatory function, and that

these rules govern network structure and evolution, then there

are several predictions. First, wewould expect that even in highly

diverse organisms, there would be evolutionary convergence

on particular preferred network motifs that perform common
Molecular Cell 49
modular functions. Second, we would

expect that, if we used molecularly con-

strained first principles to theoretically

scan through the space of all possible
networks, we should be able to enumerate and define a finite

subset of networks capable of performing certain common,

key regulatory functions. Third, we should be able to use these

design principles to guide forward engineering in biology—the

use of synthetic biology to build cells or organisms with new

custom, targeted behaviors—as we would predict that even

nonevolved regulatory systems should obey the same design

rules.

Evidence of Common Solutions: Enriched Network
Motifs
One way to explore whether nature has preferred network

designs is to search for network motifs that occur at a higher

frequency than expected. One of the most accessible types of

networks to examine in this way is transcriptional regulatory

networks, which can be mapped using high-throughput

methods like chromatin immunoprecipitation studies, which

reveal links between specific transcription factors and their

downstream targets.

Seminal studies by Alon and colleagues revealed that in bacte-

rial transcriptional networks, there are indeed highly enriched

motifs within these transcription factor networks (Shen-Orr

et al., 2002). Some of the simplest and most prevalent motifs

are autoregulatory circuits (Rosenfeld et al., 2002; Isaacs et al.,

2003), which can involve direct (e.g., a factor regulating its own

expression) or indirect (with intervening links) feedback, and

which can be positive or negative (Figure 2A). Examination of

example motifs of this type have shown that positive feedback

loops are often observed in systems that show switch-like

behavior, memory, or bistability (i.e., toggling between fully

ON or OFF states) (Alon, 2007). Negative feedback loops are

functionally associated with systems that show strong noise
, January 24, 2013 ª2013 Elsevier Inc. 203
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Figure 2. Enriched Network Motifs
(A) The most common motifs in the bacterial transcription factor network are positive and negative feedback loops.
(B) Feedforward loops (FFL) are a common three-node motif. The top and bottom nodes (X and Z) are linked by both a direct regulatory path and an indirect
one (via node Y). There are eight major subclasses of FFLs, characterized by the signs of their regulatory links. Coherent FFLs have indirect and direct links with
the same overall sign. Incoherent FFLs have indirect and direct links with the opposite overall signs.
(C) A type I coherent feedforward loop with an AND gate terminal node can show the behavior of a persistence detector—it will only respond to a longer pulse
of input.
(D) Table showing examples of simple functional behaviors and network architectures that are often associated with them (reviewed in Alon, 2007; Sneppen et al.,
2010; Tyson and Novák, 2010).
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resistance to perturbations (Becskei and Serrano, 2000; Alon,

2007; Hsu et al., 2012). Negative feedback loops are also asso-

ciated with regulatory circuits that show acceleration—a more

rapid time constant for reaching a new, input-induced steady

state (Rosenfeld et al., 2002). Construction of synthetic positive

and negative feedback circuits has validated the ability of these

network architectures to robustly achieve these properties

(Becskei and Serrano, 2000; Gardner et al., 2000). Molecular

nodes, be they promoters or signaling proteins, seem particu-

larly amenable to these kinds of feedback regulation, given the

diversity of allosteric or binding mechanisms by which these

nodes can be regulated by partners that lie downstream in

regulatory pathways.

Another, slightly more complex, network architecture that is

highly enriched in bacterial transcriptional circuits is feedforward

loops (FFLs), in which a single upstream node fans out to regu-

late two distinct downstream pathway branches of different

lengths, but then these branches reconverge on an integrating

node further downstream (Alon, 2007) (Figure 2B). Even in the

more recently characterized human transcription factor network,

there is strong enrichment for FFL motifs among three node

networks (Gerstein et al., 2012; Neph et al., 2012). There are

two major classes of feedforward loop motifs (each with several

subclasses): coherent FFL motifs, in which the long and short
204 Molecular Cell 49, January 24, 2013 ª2013 Elsevier Inc.
branches of the network have the same net sign of action, and

incoherent FFL motifs, in which the two branches have different

overall signs of action (one branch is positive, one branch is

negative) (Figure 2B). These subclasses are associated with

distinct functions (Alon, 2007; Goentoro et al., 2009). Examples

have been found of coherent feedforward loops that act as

persistence detectors—systems that only switch on when the

input persists for a minimum stimulation time (Figure 2C). Such

motifs have a terminal integrating node that functions as an

AND gate (stimulus must come from both branches simulta-

neously to activate this node). Thus the terminal node will only

switch on when the stimulus lasts for as long as the difference

in time that it takes for the signal to be transmitted down the

two branches of the network. This kind of persistence detecting

network module is postulated to filter against induction of

a response by spurious, transient stimulation. Other classes

of enriched motifs have been well summarized in a number of

excellent reviews, and these motifs and their associated

functional behaviors are summarized in Figure 2D (Alon, 2007;

Sneppen et al., 2010; Tyson and Novák, 2010).

There are several limitations to the approach for searching

for enriched motifs. First, in most cases, except for relatively

straightforward transcription factor networks, we have relatively

little data in which to search for enriched motifs—many
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Figure 3. Theoretically Mapping Network Structure Function
(A) Ideal goal of exploring how distinct functions (X and Y) map to regions of possible network space. Two functions might correspond to completely distinct or
partially overlapping classes of network architectures.
(B) Mapping the complexity of network space for one function. In this case there are two major regions of network space that can show robust performance
(fitness) of function X.
(C) Adaptation maps to two general network solutions. Adaptation is observed in many sensory systems, and is defined as when the system output responds
transiently to a change in input, but then restores itself at the original steady-state output level in order to allow for response to further changes in input. Searching
the space of all three-node enzymatic networks (16,000 possible architectures) for robust solutions for adaptation revealed only two major solution classes:
negative feedback loop with buffering node (NFBLB) and incoherent feedforward loop with proportioner node (IFFLP). The architectures require specific
parameter ranges for links that control the key regulatory node B (Ma et al., 2009).
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proteomic data sets lack information about the directionality or

sign of regulatory links. Second, we do not have a good under-

standing of the degeneracy of regulatory networks, and there-

fore we can only search for the enrichment of relatively rigidly

defined network features. We are learning that in many cases,

molecular details of cellular regulatory systems can be remark-

ably different, even among networks that perform the same

overall function and share, at low resolution, the same overall

regulatory architecture (Marı́n et al., 2000; Kitagawa and Hieter,

2001; Dementyeva and Zakian, 2010; Li and Johnson, 2010).

Thus our goal of recognizing such potential enriched motifs is

made more challenging by the degeneracy caused by evolu-

tionary drift or fine-tuning. In seeking such modules, we must

be cognizant that in some cases, similar network designs may

be constructed, not only form completely different types of

molecules, but also may have extra or equivalent links inserted

or deleted. In addition, in some cases, a node that is composed

of an individual molecule in one network may correspond to

a multimolecular system in a different but functionally similar

network. Thus any one function might be performed by a cluster
of network architectures, rather than a few specific circuits. Iden-

tifying these functionally critical structural patterns and identi-

fying the proper level of granularity with which to view networks

will be essential.

Theoretical Exploration of Network Space
The fact that certain simple transcriptional network motifs are

observed at higher frequency is consistent with there being an

underlying design logic but does not give a complete picture.

Particular network motifs might be more prevalent because of

historical evolutionary accidents that locked in these types of

solutions. A distinct approach for extracting design principles

is to try to use molecular first principles combined with com-

putational methods to theoretically explore the full space of

possible networks. In this case, one can start, not with a partic-

ular network structure, but rather with a target function of

interest, and ask the inverse question: given a particular function

X or Y, what is the space of possible network motif solutions

that can solve these problems (Figure 3A)? In this case, one is

not asking what network is observed in any particular organism,
Molecular Cell 49, January 24, 2013 ª2013 Elsevier Inc. 205



Molecular Cell

Review
but rather, what is the full space of physically plausible ways to

achieve a function, given the first-principles biochemical

constraints. How big is the space of solutions compatible with

this function, and what is the space of networks that are incom-

patible with function? Is the landscape such that there are only

a few clusters of network solutions, or are many solutions scat-

tered about in distinct regions of network space (Figure 3B)?

This approach requires a search through the large space of

possible networks. In principle, one could generate all possible

molecular networks, and then test them for their ability to

perform the target function. In practice, however, this is not

possible, given both the huge size of possible networks (depen-

dent on the number of nodes, types of nodes, and parameters

necessary to describe each node) and the computational cost

of functionally evaluating each network. Thus, realistically,

such an approach inherently requires some form of coarse-

grained approximation to be computationally feasible. All

approaches also require mathematically defining a relatively

simple fitness function that can be used as a metric for how

well a network performs the target function. There are then

several distinct strategies, each with distinct advantages and

compromises, that have been used to attack the challenging

problem of searching network space to find the highest-perform-

ing functions.

Evolutionary Search Algorithms

One search strategy is based on in silico evolution—a starting set

of random networks is permuted and tracked using genetic

algorithms (François and Hakim, 2004; François and Siggia,

2008, 2010; Warmflash et al., 2012). At each round of evolution,

these networks are tested for the target function, and a fraction

of the best-performing networks are selected, then used as the

pool that is subjected to further mutation (addition/deletion of

nodes, addition/deletion of links, change in parameters). After

multiple rounds of mutation and selection (often hundreds

of cycles), convergence on particular network structures can

often be observed. This type of simulation can be run many

independent times. This strategy, because it follows individual

network evolution trajectories, has the advantage of highlighting

networks that are ‘‘evolvable’’—ones for which there is a theoret-

ically assessable path (i.e., a path of monotonically increasing

fitness). At the same time, such a strategy is more likely to get

trapped in local fitness maxima than to give a more unbiased

view of the global landscape.

Network Enumeration Approaches

A distinct but complementary search strategy is based on

enumerating all possible architectures within a complete

network space and evaluating their ability to perform the function

(without any rounds of simulated evolution) (Schuster et al.,

1994; Li et al., 1996; Wagner, 2005; Ma et al., 2006, 2009; Lau

et al., 2007; Hornung and Barkai, 2008). This strategy should in

principle give a more unbiased (path-independent) picture of

the network space, including plausible solutions that might

be more difficult to reach through an evolutionary process.

However, in this case, one must compromise by clearly delimit-

ing the space to be searched by coarse-graining the features

of the network. By fixing features such as the number of nodes

and the types of nodes (e.g., enzymatic versus transcriptional),

one can define a finite space of networks that is computationally
206 Molecular Cell 49, January 24, 2013 ª2013 Elsevier Inc.
feasible to analyze. At this point it is feasible to search a space

of around three nodes, which corresponds to 104 possible

network architectures. Each of these nodes, however, has

multiple parameters associated with it, and it is impossible to

perform a full scan through parameter space for all networks.

Thus a common strategy is to analyze each network architec-

ture with a large sample of parameters (e.g., 104). Parameters

include features such as node concentrations, kinetic para-

meters like kcat and KM for enzymes, hill coefficients for ultrasen-

sitive nodes, and link strengths (how much activity of upstream

node alters activity of downstream node).

Although the ability of a network architecture to perform a

function (its absolute fitness) may vary greatly dependent on

the exact parameters associated with that network, one can

evaluate each network architecture by its robustness, defined

as the fraction of the sampled parameters for which it can

perform the target function above some threshold score. The

advantage of analyzing the network architectures by robustness

is that it gives a picture of the fitness landscape for that archi-

tecture—what is the probability that this solution could be found

in an evolutionary search, and what is the probability that the

solution would be evolutionarily stable, i.e., able to perform the

function in the face of random evolutionary drift of parameters?

Searching for Solutions to Common Functional

Problems

These two computational search strategies have been used to

explore the solution space for a number of common biological

regulatory problems. These include dynamic behaviors ob-

served in biological regulation such as the following: bistability,

the ability of a system to switch in an all-or-none fashion between

two distinct states, often with memory, as is observed in cell

fate switches (Shah and Sarkar, 2011); adaptation, the ability of

a system to transiently respond after input stimulus, but then

to reset itself back to its original steady-state output level in order

to allow for detection of further stimuli, a linear control system

behavior that is observed in many sensory systems or homeo-

static systems (François and Siggia, 2008; Ma et al., 2009);

and oscillation, the ability of a system to stably fluctuate between

distinct states, as is the case in the circadian clock or in wave-

like signaling systems (Wagner, 2005; Markevich et al., 2006;

Tsai et al., 2008; Muñoz-Garcı́a and Kholodenko, 2010). These

network search approaches have also been used to search for

solutions to spatial regulation problems, such as the following:

developmental patterning, networks that can form polar bound-

aries (Ma et al., 2006) and networks that can interpret a transient

gradient to give an array of cells that form repeated stripes or a

distinct series of segments, as observed in development (Fran-

çois and Siggia, 2010); and cell polarization, networks that can

drive self-organized symmetry breaking to yield cells withmolec-

ularly distinct poles (Chau et al., 2012).

These types of target problems or behaviors have been

chosen because they represent examples of what we currently

consider as primitive regulatory functions that are prevalent

throughout biology. Although simple, we can also see how these

core functions could serve as building blocks to assemble

higher-order function. We also know of and understand at least

some natural systems that perform these functions (i.e., we

have positive controls).
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These computational search strategies have been extremely

enlightening. First, they almost always yield networks that are

capable of performing the target function, and identify known

solutions that have been observed in real biology. Second, the

fact that in silico evolutionary searches have been able to find

networks that can perform these complex functions is funda-

mentally important evidence supporting the plausibility of

evolution of complex behaviors (François and Siggia, 2008). It

is remarkable that a random evolutionary search process, using

only a set of simple regulatory modules (like promoter/transcrip-

tion factors with varying affinities and hill coefficients) can lead

to complex ‘‘biological’’ functions. Third, in nearly all cases,

such searches have found a relatively finite cluster of solutions

for each functional task, indicating that there may be some truth

to the notion that there are a small number of ‘‘good’’ network

solutions for a given function.

An example of a specific biological function that has been

analyzed by multiple theoretical approaches is that of adapta-

tion. As described earlier, adaptation is a dynamic behavior

observed in many sensory systems, ranging from vision to

bacterial chemotaxis, in which the system responds transiently

to a change in input but then resets itself back to its original

steady state. Notably, both evolutionary algorithms (François

and Siggia, 2008) and circuit enumeration (Ma et al., 2009)

approaches show convergence on a very small set of basic

circuit families, including the architecture that has been well

characterized for adaptation in bacterial chemotaxis.

In the enumeration analysis, all possible three-node network

architectures (limited to Michaelis-Menten enzyme nodes that

regulate one another) were tested for adaptation behavior, using

10,000 parameter sets for each (Figure 3C) (Ma et al., 2009). Out

of the 16,000 possible networks, �400 were found to show

robust adaptation (i.e., performed behavior under a reasonable

number of parameter sets). Analysis of these networks revealed

that all 400 robust networks mapped to only two fundamental

classes of network architectures. The first architecture is a nega-

tive feedback architecture in which the feedback node buffers

against change in output—analogous to the methylation-based

feedback node observed in bacterial chemotaxis that allows it

to achieve adaptation to chemorepellent or attractant input.

The second architecture is an incoherent feedforward archi-

tecture in which the slower feedforward node responds in

a proportional way to compensate for input and resets the

output node to the original steady state. It can be analytically

shown, in this case, that these are the only two general solutions

to yield a system that will return to the same output steady-state

value in the face of input perturbations.

Importantly, architecture alone is not sufficient to specify this

function. First, each solution class really represents a cluster of

network architectures that embody a range of different precise

architectures that mathematically perform the same operation

(i.e., negative feedback loop via node B can involve different

linkages A/B–jA, C/B–jA, or C/B–jC). Second, while most

parameters are relatively unconstrained in both of these general

solution classes, each has a handful of absolutely critical param-

eter values for key nodes. In these cases, the critical regulatory

nodes must have KM values that cause the enzyme to function

in either the linear or the saturated regimes. Thus, in reality, it
is perhaps best to consider these two general network solutions

as being a cluster of networks encompassed by a set of connec-

tivity and parameter constraints.

It is quite remarkable that all of the functional networks for

adaptation, as well as other functional examples, cluster into

so few major classes, showing that there are a finite number

of ways to solve this functional problem with basic molecular

nodes. Thus, such studies suggest that it may be possible to

determine a set of basic architectures that are preferred

biochemical solutions for particular tasks.

Experimentally Exploring Network Space
with Synthetic Biology
A parallel, and empirical, way to explore network space is using

the emerging approach of synthetic biology. Although synthetic

biology is often associated primarily with specific applications,

such as the design of novel biomanufacturing pathways, the

large-scale rewiring of biological regulatory networks actually

offers a remarkably powerful way to explore basic science

questions about the design logic of regulatory networks

(Marshall, 2008; Rafelski and Marshall, 2008; Mukherji and van

Oudenaarden, 2009; Weber and Fussenegger, 2009; Bashor

et al., 2010; Elowitz and Lim, 2010; Liu et al., 2011; Nandagopal

and Elowitz, 2011; Randall et al., 2011; Miller et al., 2012;

Slusarczyk andWeiss, 2012; Slusarczyk et al., 2012). An exciting

approach is to empirically explore network space by building

new or altered synthetic circuits. If there are indeed a finite

number of possible core networks that can perform a key

function, then the same design rules should govern the con-

struction of networks composed of nonnative components and

generated through a nonevolutionary process. In fact, rebuilding

a minimal network that can perform a function of interest using

completely nonnative components can be viewed as one of

the strongest proofs of particular design rules (much like how

the synthesis of organic molecules was viewed as the ultimate

proof of their molecular structure). Moreover, synthetic net-

works, because of their minimal and streamlined designs, are

often experimentally easier to tune and scan parameter space

for. Thus they may allow more systematic probing of the bound-

aries of parameter space that are required for performing the

target function. In this sense, a synthetic biology approach is

in many ways a philosophical extension of the much older

biochemical reconstitution approach—the goal is to minimize

and simplify the system to systematically explore the key

requirements for function.

There are several distinct approaches to using synthetic

biology to explore design principles. Some researchers have

used completely nonnative molecular platforms to build

networks from scratch. One powerful system of this type is

networks of specially designed interacting nucleic acid mole-

cules, whereby the presence of a single-strand molecule input

can catalyze stand displacement reactions that can, if properly

designed, propagate as a cascade through an in vitro molecular

network. The cascades in these strand displacement systems

are catalytically controlled (i.e., activated strands act as

enzymes) but are energetically powered by the presence of

‘‘fuel’’ molecules that base pair with leftover strands, acting as

a LeChatlier’s sink to push the reactions forward (Seelig et al.,
Molecular Cell 49, January 24, 2013 ª2013 Elsevier Inc. 207
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Figure 4. Using Synthetic Biology to Empirically Map Network Space
(A) Improvements in transcriptional oscillator design. The original repressilator design, a minimal three-ring negative feedback loop made of three repressors,
functioned but did not show consistent periods or amplitudes (Elowitz and Leibler, 2000).
(B) Many iterative improvements have been made in oscillator design, as exemplified by a two-repressor negative feedback loop coupled with positive and
negative self-feedback loops, which yields a robust, tunable oscillator (Stricker et al., 2008).
(C and D) Exploration of multicellular patterning using synthetic circuits. Cell-cell communication circuits in bacteria have been used to generate fields of many
cells that show developmental-like, static as well as expanding patterns such as ring/stripe formation (Basu et al., 2005; Liu et al., 2011).
(E) Probing circuits that can yield intracellular spatial self-organization. Parallel computational and synthetic studies were performed to construct circuits that can
robustly generate self-organized cell polarization. The most robust network involves a combination of less functional minimal motifs, and was used to build
a circuit that generated artificial phosphoinositide (3,4,5) tris-phosphate (PIP3) poles in yeast (Chau et al., 2012).
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2006). As far as we know, these types of reactions are not used in

evolved living systems, but they represent an orthogonal molec-

ular communication system that is analogous to the distributed

molecular communication systems of cells. Such nucleic acid

strand displacement reactions have been used to construct

systems that show network behaviors, including logic opera-

tions, cascades, amplification, and feedback (Kim et al., 2006;

Zhang et al., 2007; Qian and Winfree, 2011; Qian et al., 2011).

Theoretical analysis indicates that arbitrary chemical reaction

networks can be encoded using this type of nucleic acid compo-

nent framework (Soloveichik et al., 2010). Thus a goal in this field

is to ask whether such nucleic acid strand displacement circuits

can be used as a platform to explore fundamental molecular

rules about what distributed molecular systems can or cannot

compute.

Other synthetic biology approaches aim to use natural biomo-

lecular components, but in novel arrangements to construct

circuits capable of target functions. One of the classic examples

of a synthetic network is the synthetic oscillator (Elowitz and

Leibler, 2000), built from a simple ring of three interlinked

transcriptional repressors (Figure 4A). This original synthetic

repressor, though functional, showed relatively poor perfor-

mance, displaying inconsistent amplitudes and periods. Since

then, many researchers have used synthetic oscillator as a

model for iterative network improvement (Figure 4B). These
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synthetic biology efforts, combined with complementary com-

putational analysis, have resulted in dramatic improvements in

performance by incorporating additional network elements

such as strong positive feedback on key nodes. Minimal designs

have been identified that yield robust oscillations with either

tunable amplitude or frequency, and these match architectures

observed in natural oscillator systems. Thus iterative synthetic

cycles have been useful in defining the space of oscillatory

networks, and in distinguishing bare bones oscillator designs

from slightly more complex designs that show far more robust

behaviors or more specialized classes of behaviors (Atkinson

et al., 2003; Fung et al., 2005; Stricker et al., 2008; Tsai et al.,

2008; Tigges et al., 2009, 2010; Aubel and Fussenegger, 2010).

In addition to oscillators, synthetic biology approaches have

been used to explore the construction of systems performing

a range of other functional behaviors, including bistable memory

switches, logic gate operations, population control, multicellular

patterning, multicellular boundary formation, and cell polariza-

tion (Figures 4D and 4E). This impressive array of efforts has

shown that it is possible to build minimal systems that recapitu-

late complex dynamic and spatial biological behaviors. One of

the clearest and most important points to emerge is that it is

often possible to use very different types of components—be

they transcriptional, signaling, metabolic, or RNAi—to achieve

the same class of behavior. In addition, these synthetic circuits



Figure 5. Concept of a Design Table for
Biological Regulatory Networks
The periodic table abstracts the complex elec-
tronic structure of a particular atom and organizes
it according to atomic number and valence. These
features are in turn the functionally most important
features relevant to understanding how the atom
forms bonds to generate higher-order chemical
structures. Analogously, a hypothetical design
table of core regulatory network motifs might
encompass and abstract the general/common
solutions to core biological functions (which result
from the constraints on molecular systems). This
organization and classification might prove useful
in understanding how evolution or engineering can
build higher-order networks that show particular
complex behaviors.

Molecular Cell

Review
have usually been constructed in a manner that allows some

aspect of combinatorial parameter tuning, and thus have pro-

vided a way to empirically explore parameter space to define

the boundaries that constrain function, as well as bifurcations

(boundaries in parameter space in which function qualitatively

changes). In the future, synthetic network combinatorial libraries

combined with sophisticated functional screens are likely to

provide a powerful empirical way not just to create a network

with a particular target function, but to more fully define the

architectural and parameter constraints for that function.

Looking Forward
We have explored the concept that complex molecular networks

can be deconstructed into simpler network motifs that underlie

function. Several lines of evidence support this conceptual

simplification of biological regulatory networks. First, within

transcriptional networks that have been explored in a high-

throughput manner, there are clearly certain network motifs

that are enriched, consistent with convergent evolution. These

motifs are also associated with classes of regulatory functions.

Second, a number of theoretical searches of network space

suggest that for given regulatory functions such as adaptation

or oscillation there are a finite number of core network solutions.

Such studies are supported by synthetic biology reconstruction

experiments in which different solutions are built and the key

parameters and links tested. These studies suggest that there

may be utility in trying to catalog the key subroutines that are

necessary for life.

A Design Table of Modular Network Functions

These findings support the intriguing notion of organizing all

plausible network architectures into a ‘‘biological design table.’’

One way to view this framework is through an imperfect but

instructive analogy to the periodic table of elements (Figure 5).

Prior to the periodic table, many analytical measurements of

elements had been collected, but there was no sensible way to

understand the properties and reactivity of each element. The

era of Mendeleev was one in which researchers took this large

amount of confusing data and tried to organize it in different

ways in attempts to recognizemeaningful patterns. This is similar
to the stage that we are at in understanding the mechanisms

of biological regulatory networks (Figure 5). One of the great

insights provided by the periodic table was to classify the phys-

ical properties of elements in a way that accurately predicted

their chemical reactivity and behavior. Instead of focusing on

all properties describing each element, the periodic table, in

the end, sorted them based on atomic number and valence—

the key abstract properties that determined their ability to

bond with other atoms. The organization of the periodic table

is really a reflection of the physics of electron orbitals (how

they are filled and how they determine bonding), but the abstract

classification of atoms as simple models with constrained

valency and bonding properties essentially allows one to skip

over the detailed physics to understand, at a very practical level,

the universe of possible higher-order chemical structures that

this atom can participate in.

In an analogous way, there may be ways to abstract and

classify particular cellular network architectures that focus on

the properties that are most salient for their function, and the

way in which they might be used as modules in evolution to

build higher-order networks. If we did have such a design table

for biological regulatory networks, it would be a powerful way

to deconstruct complex biological or disease networks and to

understand how they function. Might the observation of partic-

ular patterns of network architectures and parameters suggest

functional hypotheses, much the way that observation of

sequence homology does today? Such a design table would

also be extremely useful to guide the design of novel synthetic

circuits for many applications.

But, even if we assume that this model of classifying network

motifs is correct, there remain many more questions than

answers. Many of the most important and broad sets of ques-

tions concern how to search for and map core network modules

for this hypothetical design table, discussed below.

Classification: What Is the Set of Primitive Molecular

Subroutines that Are Most Critical for Cellular Systems?

Most theoretical studies searching for network space have been

limited to a relatively small set of behaviors (bistability, oscilla-

tion, adaptation, etc.), and it is both challenging and fascinating
Molecular Cell 49, January 24, 2013 ª2013 Elsevier Inc. 209



Molecular Cell

Review
to think more fundamentally about what are the core set of

subroutines that are necessary to build and keep an organism

alive. Most work has focused on simple information-processing

functions, but such approaches could clearly be important in

understanding more complex spatial organization, such as

development (Davies, 2008; Peter and Davidson, 2011b,

2011a; Peter et al., 2012). Similar concepts may also operate

in the design and evolution of complex metabolic pathways, as

there may be analogous rules governing which chemicals are

chosen as precursors, how they are linked by chemical paths

and branchpoints, and how the enzymes are regulated as

a network (Bar-Even et al., 2012).

Metrics: What Are the Best Ways to Search

for and Evaluate Networks?

There remain different strategies for searching network space—

which makes the most sense within the context of biology—

searching through an evolutionary process (genetic algorithms)

or through full enumeration of a coarse-grained space? More-

over, what is the best way to constrain and coarse-grain network

space in such studies? How many nodes should be allowed,

and what node types should be used, given the many different

possible forms of regulatory molecules (e.g., enzymatic nodes,

transcriptional nodes, miRNA nodes, etc.). Are these mecha-

nistic differences (which require different mathematical models

for node behavior) fine details, or do they significantly constrain

solution space in different ways? Finally, in evaluating the func-

tion of networks in these search problems, most researchers

have focused primarily on identifying robust networks (solutions

that work in a larger range of parameter space), as opposed to

the ones with the highest performance. This strategy is focused

more on what is an evolutionary plausible solution—what is

a solution that could potentially be found through an evolutionary

process, and one that would be stable to drift in exact para-

meters. But is this assumption correct, or is it possible that

nature may have found higher-performance solutions that are

distinct from the robust solutions?

From Abstract to Concrete: How Do We Identify

Functional Networks from Experimental

Proteomic Data?

Beyond simple transcriptional networks, there are very few ways

to take current proteomic data and translate it into a functional

and directional network map. Thus we lack sufficient tractable

experimental data. How can we address this gap and build

a bridge that can link theoretical network analysis to experi-

mental high-throughput systems biology data? There is currently

a flood of functional genomic data that can identify sets of genes

that are functionally linked, and yield some information about

whether they are linked in series or in parallel processes via

differential epistatic relationships (Ryan et al., 2012) (also see

review by Fraser et al., 2013, in this issue of Molecular Cell).

How do we take these functional genomic maps, as well as

protein-protein interaction maps, and turn them into functional

network maps, given the ambiguity of linkage, directionality,

and sign of regulation between nodes?

Can Biological Regulation Be Accurately Represented

by Simpler Networks?

Perhaps the most fundamental question concerning the logic

of biological networks is whether this type of abstract and
210 Molecular Cell 49, January 24, 2013 ª2013 Elsevier Inc.
hierarchical model of complex cellular networks is an accurate

approximation. Can we actually divide circuits into clearly

distinct functional classes? To some degree, we already know

that the assumption that network architecture alone is sufficient

to determine function is wrong—the same network topology

can qualitatively change function in different regions of para-

meter space. But are these parameter ‘‘phase diagrams’’ for

a particular network architecture relatively simple so that we

can define clear network/parameter regions that correspond

to distinct functions? Or alternatively, are the functional classes

of networks so degenerate and overlapping such that there are

not distinct definable boundaries between circuits of different

functional classes? It is possible that there is a class of networks

architectures that are monofunctional (locked into one particular

type of function, despite parameter variation), whereas other

classes are polyfunctional and can move from one functional

regime to another based on subtle parameter changes or

changes of a few links.

Another fundamental question is whether networkmotifs really

can be thought of as modules that can be used to build more

complex function (Hartwell et al., 1999). Even if an isolated

network can perform a function, does it still behave the same

when it is linked to other upstream and downstream modules?

Or does the network behavior change when you place this kind

of functional load on it (i.e., can downstream effectors compete

with feedback or feedforward interactions with an output node?)

(Jiang et al., 2011)?

A Question of Utility

Ultimately, like other abstract theoretical constructs such as the

periodic table and valency in chemistry, the bottom-line question

concerns the utility of this framework. As the statistician George

Box wrote, ‘‘All models are wrong, but some are useful’’ (Box,

1976). At some resolution, the abstract classification of net-

works is incorrect—each regulatory system will have somewhat

different links, composition, and parameters, and these will alter

function of the system in some way. But how good an approxi-

mation is this?

As discussed earlier, we believe that this conceptual frame-

work of a design table of network motifs will be useful for forward

engineering. Some molecular networks will be easier to recog-

nize, build, and work with in a reliable and predictable way,

and thus will have immediate and exciting utility in the construc-

tion and engineering of biological systems. We may be able

to design optimized modules that can repeatedly and reliably

execute desired subfunctions, and include features like tunability

and insulation. Thus this design framework is likely to be of use in

synthetic biology, whether it be in the design of organisms, opti-

mized production of fuels, nutrients, or chemicals, or in the

design of smart cell-based therapies that use designed signaling

networks to make complex therapeutic decisions. One of the

more interesting questions will be whether the synthetic solu-

tions we converge on for particular functions are the same as

those that evolution has settled on. It is possible that evolutionary

solutions may be more limited because of stochastic constraints

on exploring the solution space that are not limiting for first

principles-based design.

Another emerging area in which a systematic understanding

of network design principles may be of great utility is systems
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pharmacology. Systems pharmacology can be thought of as an

example of network engineering in that one wants to take

a disease network and strategically figure out how to tune or

modulate the network so that it restores function or stability.

One of the intriguing possibilities of network-based medicine is

the idea that some strategies might not focus on simply blocking

one malfunctioning protein with a drug, but that instead one

might modulate different nodes in a network to redirect the

network toward a robust and stable region of function space

(Yang et al., 2008). Importantly, it is possible that such stable

regions of function space that we want to drive disease networks

toward may be ‘‘synthetic’’ in the sense that they are different

from the wild-type (nondisease) network structure.

As we move forward with the maturation of systems and

synthetic biology, we shall see if this kind of conceptual frame-

work of idealized network motifs is useful in mechanistically

deconstructing what are, for now, often impenetrably complex

molecular networks. The biggest payoff would indeed be

achieving a more intimate and fundamental understanding of

the mysteries of how living systems harness ensembles of

genetically encoded molecules to execute complex phenotypic

functions, and the landscape of physically plausible network

structure/function relationships that evolution operates within.

Then we could look forward to a day when we do not view the

complexity of biological networks as a source of confusion and

mystery, but instead as a system that we have logical command

of, and which we can tune and harness in treating disease and

solving other biotechnological challenges.
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