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SUMMARY

How cells form global, self-organized structures
using genetically encoded molecular rules remains
elusive. Here, we take a synthetic biology approach
to investigate the design principles governing cell
polarization. First, using a coarse-grained computa-
tional model, we searched for all possible simple
networks that can achieve polarization. All solutions
contained one of three minimal motifs: positive feed-
back, mutual inhibition, or inhibitor with positive
feedback. These minimal motifs alone could achieve
polarization under limited conditions; circuits that
combined two or more of these motifs were signifi-
cantly more robust. With these design principles as
a blueprint, we experimentally constructed artificial
polarization networks in yeast, using a toolkit of
chimeric signaling proteins that spatially direct the
synthesis and degradation of phosphatidylinositol
(3,4,5)-trisphosphate (PIP3). Circuits with combinato-
rial motifs yielded clear foci of synthetic PIP3 that can
persist for nearly an hour. Thus, by harnessing
localization-regulated signaling molecules, we can
engineer simple molecular circuits that reliably
execute spatial self-organized programs.
INTRODUCTION

A hallmark of living cells is their ability to form complex structures

that are essential for their function. Remarkably, such cellular

structures arise through a process of self-organization; the indi-

vidual molecules in a cell function as a coherent system to create

global order despite the fact that these molecules are distributed

and can only execute simple local regulatory rules (Kirschner

et al., 2000; Karsenti, 2008; Liu and Fletcher, 2009; Loose

et al., 2011). Howmolecular self-organizing systems dynamically
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shape the spatial organization of the cell remains a central ques-

tion in cell biology. Ultimately, if we could understand how to

engineer spatial self-organizing systems, this would have impor-

tant implications in controlling cellular shape, movement, and

function or in the engineering of complex nonbiological molec-

ular systems (Rafelski and Marshall, 2008).

One of the most fundamental examples of cellular spatial self-

organization is polarization: the asymmetric distribution of key

molecules within the cell (Drubin and Nelson, 1996; Shapiro

et al., 2002; Macara andMili, 2008). Polarization is a fundamental

building block upon which many other more complex spatial

behaviors are constructed. Motile cells must polarize to generate

a distinct front and back—one associated with extension and

the other with contraction—thus allowing them to move in one

direction (Mogilner and Oster, 2003; Wang, 2009; Swaney

et al., 2010). Similarly, epithelial cells must polarize to yield

distinct apical and basal surfaces (St Johnston and Ahringer,

2010; McCaffrey and Macara, 2011). During development, key

cells polarize before undergoing asymmetric cell division,

leading to daughter cells that inherit distinct molecular compo-

nents and, ultimately, distinct fates (Doe, 2001; St Johnston

and Ahringer, 2010; Nance and Zallen, 2011). In the developing

nervous system, neurons polarize to form distinct dendritic and

axonal structures (Inagaki et al., 2011). Even a single-celled

organism such as Saccharomyces cerevisiae (S. cerevisiae)

must polarize during the processes of budding and mating

(Drubin and Nelson, 1996; Irazoqui and Lew, 2004; Wedlich-

Soldner et al., 2004; Slaughter et al., 2009; Johnson et al., 2011).

Prior theoretical work has explored potential mechanisms for

cell polarization, from simple models based on local positive

feedback and global inhibition to far more detailed models that

attempt to explicitly explain themolecular interactions in specific

examples of cell polarization (Gierer and Meinhardt, 1972; Mein-

hardt and Gierer, 2000; Wedlich-Soldner et al., 2003; Jilkine and

Edelstein-Keshet, 2011; Mogilner and Odde, 2011; Mogilner

et al., 2012). Nevertheless, a unified picture of the overall design

principles of polarization circuits has been elusive. For example,

do we understand polarization sufficiently to know how to design

polarization circuits from scratch?
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Figure 1. Coarse-Grained Computational Model for Cell Polarization

(A) Self-organizing cell polarization is defined as the spontaneous asymmetric

organization of a polarity marker (red) within the cell. All 81 regulatory network

topologies consisting of one or two components were tested for their ability to

generate polarization. Each network topology was sampled using sets of

parameters representing strengths of regulatory links (RX/Y), diffusion rates

(DX), and component concentrations (CX).

(B) The cell is modeled as a one-dimensional membrane lattice with a well-

mixed cytosol. Simple binding and dissociation reactions, as well as lateral

diffusion of membrane-bound components, are simulated at each lattice

location using a stochastic simulation algorithm. Regulatory links (RX/Y) alter

the binding/dissociation rates at neighboring lattice sites.

(C) The spatial distribution of membrane-bound polarity markers changes

throughout the simulation, as can be seen on the kymographs. After the sys-

tem has reached steady state, a polarity score P is calculated as the magni-

tude of the vector sum of all membrane-bound polarity markers, normalized by

the maximum possible magnitude for a lattice of size L (see Extended

Experimental Procedures). For all subsequent analyses, systems with p > 0.6

are classified as ‘‘polarized.’’
This type of synthetic biology question presents an alternative

and complementary approach to investigating cell polarization,

focusing on how one can design molecular systems that

polarize, rather than focusing on any one particular example of

polarization. Such an approach can potentially reveal the design

principles that govern polarization by raising a unique set of

questions. At the network level, what are the simplest circuits

that can robustly achieve polarization? Are theremultiple general

classes of solutions, and if so, do they have distinct functional

advantages and limitations? Can we use our understanding to

construct polarization systems in which an engineered set of

genetically encoded molecules and their local interactions can

control global cellular organization?
Most work in synthetic biology to date has focused on engi-

neering circuits that control scalar output quantities (e.g., gene

expression) over time, and relatively little work has explored

how to engineer spatial control circuits (Purnick and Weiss,

2009; Khalil and Collins, 2010; Nandagopal and Elowitz, 2011).

Thus, if we want the ability to synthetically control spatial behav-

iors, we will need to develop components that can encode and

transmit spatial regulatory information.

Here, we integrate theory and experiment to explore the

design principles underlying cell polarization. Using a coarse-

grained computational model, we enumerated all possible

one- and two-node circuits that can polarize. We compared

the functional constraints and robustness of the core networks

that emerged. Using this computational analysis as a guide, we

genetically engineered artificial polarization circuits that produce

phosphatidylinositol (3,4,5)-trisphosphate (PIP3) poles when

expressed in yeast. The links in these synthetic circuits were

implemented by fusing catalytic modules that create or degrade

PIP3 to recognition modules that spatially target these catalytic

activities. This combination of computational and experimental

analysis results in a more general understanding of the core

requirements for locally driven interaction networks that can yield

polarization and demonstrates that it is possible to program

artificial self-organizing spatial control circuits in living cells.

RESULTS

Coarse-Grained Computational Framework
for Simulating Cell Polarization
We sought to enumerate all possible simplemolecular regulatory

networks that could yield polarization to better understand the

design principles governing this fundamental self-organizing

behavior (Figure 1A). In natural networks, core network motifs

may be obscured by evolutionary history and pleiotropic function

(Ma et al., 2006; 2009).

We developed a computational framework simple enough to

enable efficient screening of a large number of network architec-

tures yet complex enough to represent the essential spatial

behavior of polarization. We decided to explore the full space

of two-node networks. The two nodes represent two molecular

species: a ‘‘polarity marker’’ species whose distribution we

measure and a second ‘‘regulatory’’ species that has the poten-

tial to alter the behavior of the polarizing species (Figure 1A). The

full circuit space is defined by different combinations of regula-

tory links between the two nodes (either positive, negative, or

no link), as well as self-regulation (positive, negative, or no feed-

back), yielding a total of 81 possible network architectures.

We implemented a coarse-grained model in which the plasma

membrane is represented by a one-dimensional circular lattice

(of size 100) surrounding a ‘‘cytosolic’’ pool of the two molecules

(Figure 1B). Many examples of cell polarization involve localiza-

tion of molecules to the plasma membrane. Thus, we defined

reactions to be simplemembrane-binding and dissociation reac-

tions (Figure 1B) and polarization as the asymmetric distribution

of the polarity marker along the membrane.

We used a stochastic algorithm to simulate binding and disso-

ciation events (Gillespie, 1977). Thus, at lattice location i, a

signaling component X bound to themembrane with rate kXbind(i)
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or amembrane-bound component X dissociated into the cytosol

with rate kXdissoc(i). Regulatory interactions due to membrane-

bound molecules at neighboring positions in the lattice act

by modifying the binding and dissociation rates, kXbind(i) and

kXdissoc(i), respectively. Lateral diffusion rates for each compo-

nent within the membrane were also defined as parameters in

themodel (DX, Figure 1B).We treated the cytosol as awell-mixed

reservoir and simulated only lateral diffusion on the membrane,

assuming that membrane binding and dissociation occur on a

much slower timescale than cytosolic diffusion.

In natural polarization circuits, local regulatory interactions

between molecules can occur through mechanisms such as

enzymatic reactions, physical recruitment, and cytoskeletal

transport. We chose a generalizable, abstract representation of

local regulatory interactions that modeled the overall effect of

regulation rather than its implementation. The regulatory links

in our model affected the local apparent membrane affinities of

the signaling components by changing basal binding and disso-

ciation reaction rates (for full equations, see Extended Experi-

mental Procedures available online). A positive regulatory

link from node X to Y (RX/Y > 0) increased the binding rate of

Y, kYbind(i) and decreased the dissociation rate of Y, kYdissoc(i)

as a function of the local concentration of membrane-bound X

at lattice location i. This effectively increased the local concen-

tration of membrane-bound Y in the vicinity of membrane-

bound X, leading to ‘‘positive feedback’’ when Y = X or ‘‘cross

activation’’ when YsX. The reverse was true for negative

‘‘inhibitory’’ links.

We enumerated all network topologies by combinatorially

varying the possible regulatory links between two network nodes

(Figure 1A). Note that a network topology only encodes the types

of regulatory interactions between the nodes, whereas the

magnitudes of these regulatory interactions are specified as

parameters.

Scoring Polarization and Searching Parameter Space
for Robust Networks
After each simulation reached steady state, a polarization score

(P) was calculated as the normalized magnitude of the vector

sum of each of the membrane-bound polarity markers (Fig-

ure 1C, see Extended Experimental Procedures). A nonpolarized

cell with a random distribution of membrane-bound polarity

markers resulted in many randomly oriented vectors and thus

low P (Figure 1C, top). In a polarized cell with a cluster of

membrane-bound polarity markers, many aligned vectors re-

sulted in a high P (Figure 1C, bottom).

To test the robustness of each network topology, we sampled

the performance of the network topology with 10,000 parameter

sets (Figure 1A). Each network had, at most, eight associated

parameters: the strengths of the four network regulatory links,

the lateral membrane diffusion rates of the two molecular

species, and the concentrations of the two molecular species.

We scored each network topology by its polarization robustness,

Q, the fraction of parameter sets that polarized with p > 0.6 (von

Dassow et al., 2000). More robust topologies are most likely to

emerge through a semi-random process such as evolution and

are also likely to be the easiest targets for engineering of polari-

zation networks.
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Identification of Three Minimal Network Motifs
for Cell Polarization
Within the complete set of 81 network topologies, 33 (or 41%)

were able to polarize with a robustness of Q > 0.0005 (Figure 2A).

The performance of these 33 candidate topologies consistently

stood out above background, even when we altered the basal

conditions of the simulations (Figure S1A). Further, to confirm

that our parameter sampling was sufficient, we tested a subset

of representative topologies using a 5-fold larger sample size

(50,000 parameter sets) and found that robustness values did

not change significantly (Figure S1B).

We hypothesized that some of the candidate topologies were

degenerate, i.e., they contain regulatory links that are either

extraneous or detrimental to performance. We compared the Q

value of each network topology with the Q values of all of its

‘‘ancestor’’ topologies consisting of one fewer regulatory links

(Figure S2A). If a network topology was more robust than all of

its ancestors, then all of the regulatory links were indeed essen-

tial, and we considered it to be a new core network topology. If a

network topology failed to display increased robustness in

comparison to at least one of its ancestors, then some of its

regulatory links were unnecessary elaborations, and the

topology was considered degenerate. After this analysis, only

8 out of the 33 candidate topologies were classified as core

network topologies (Figure 2B), all of which achieve polarization

over similar ranges of timescales depending on parameters

(Figure S2B).

Within the core network topologies, we observed three

recurring minimal motifs: positive feedback on the polarizing

molecule, either direct (topology 23) or indirect (topology 44);

an inhibitor with positive feedback (topology 69); and mutual

inhibition (topology 65). All of the eight core topologies that

emerged from our analysis were found to contain one or more

of these three minimal motifs (Figure 2C). Note that, for

simplicity, direct and indirect positive feedback are considered

to be different implementations of the same minimal motif

of positive feedback. But as subsequent analyses will show,

these two implementations in fact display distinct robustness

behaviors.

Minimal Motifs Only Achieve Polarization within
Constrained Regions of Parameter Space; Motif
Combinations Are More Robust
Because all of the identified core network topologies could be

constructed using one or more of these three minimal motifs

(Figure 2C), we asked whether there were functional differences

between minimal motifs and topologies that contained motif

combinations. We explored how distinct topologies performed

when biological parameters, such as component concentra-

tions, diffusion constants, and regulation strengths, were varied.

We first investigated each topology’s robustness to variation

in concentrations of signaling components. For each of the three

minimal motifs, we performed finer sampling (100,000 parameter

sets), binned parameter sets by concentrations, and calculated

each motif’s robustness Q to variation in the remaining parame-

ters (regulation strengths and diffusion constants). We visualized

the robustness landscape as a heatmap in two-dimensional

concentration space (Figure 3A, i–iv).
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Figure 2. Three Minimal Motifs Drive

Robust Self-Organizing Cell Polarization

(A) For each of the 81 network topologies,

a robustness score Q was calculated as the frac-

tion of parameter sets that resulted in a polarized

distribution of membrane-bound polarity markers.

Topologies with Q > 0.0005 were chosen as

candidates for further analyses. Core topologies

are indicated as darker bars.

(B) Within the set of candidate network topologies,

eight were identified as core network topologies

for cell polarization after elimination of degenerate

topologies. Note that, although topologies 1–27 do

not contain a link from the regulator node back

to the polarity marker and are therefore equivalent

to single-node topologies consisting only of the

polarizing species, they were nonetheless tested

individually.

(C) Each of the eight core network topologies

contains one or more minimal motifs: positive

feedback, mutual inhibition, and inhibitor with

positive feedback.

See also Figures S1 and S2.
The positive feedback minimal motif can achieve polarization

but only within a limited region of concentration space (Fig-

ure 3A, i). For direct positive feedback, polarization requires a

limiting concentration of the polarizing species—less than the

number of total binding sites on the membrane. This observation

is consistent with previous studies in which a network combining

self-activation with limiting concentrations (a form of ‘‘local acti-

vation and global inhibition’’) was capable of both polarization

and pattern formation (Gierer and Meinhardt, 1972; Meinhardt

and Gierer, 2000; Altschuler et al., 2008). Intuitively, a network

with positive feedback and an excess concentration of mole-

cules fails to robustly polarize because the molecules simply

promote each other’s binding, leading to symmetric saturation

of the membrane. Our analysis also shows that indirect positive

feedback networks (involving a secondary activator) are even

more constrained in concentration space (Figure 3A, ii). Because

the feedback loop involves both of the network nodes, both red

and blue molecules must be present in limiting concentrations to

yield asymmetric membrane binding.

The inhibitor with positive feedback motif displays distinct

robustness constraints (Figure 3A, iii). The inhibitor must be

present in limiting concentrations, and an excess concentration
Cell 151, 320–332,
of the polarity marker is required. The

inhibitor’s positive feedback combined

with a limiting concentration effectively

implements asymmetric clustering of the

inhibitor on the membrane. The asym-

metric spatial organization of the inhibitor

then restricts the localization of the

polarity marker, resulting in polarization.

The third minimal motif that we

observed was mutual inhibition between

the two nodes. Although cross-antago-

nism between two components (a
double-negative feedback loop) can in some contexts be

considered to be equivalent to positive feedback (Meinhardt

andGierer, 2000), our results indicate that, in this spatial context,

this motif is actually highly distinct in behavior (Figure 3A, iv).

Specifically, mutual inhibition can drive polarization in the pres-

ence of excess concentrations of both signaling components,

and limiting concentrations actually hinder its ability to self-orga-

nize polarization.

Thus, although each minimal motif can generate cell polariza-

tion, it is only able to do so in limited regions of concentra-

tion space. Combining motifs into more complex topologies,

however, increases robustness to concentration variations. For

example, coupling mutual inhibition to an inhibitor with positive

feedback enables polarization in a larger fraction of concentra-

tion space (Figure 3A, v–viii) when compared to either of the

minimal motifs alone. Combining all three motifs resulted in the

most robust self-organizing polarization topology (Figure 3A, viii).

A similar increased robustness of combinatorial networks was

also observed with respect to variation of other parameters such

as diffusion constants and regulatory strengths. In ‘‘diffusion

space’’ in which lateral diffusion rates of the molecular species

were varied (Figure 3B) and in ‘‘regulation space’’ in which
October 12, 2012 ª2012 Elsevier Inc. 323
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Figure 3. Combining Minimal Motifs In-

creases Robustness to Variation in Compo-

nent Concentrations and Lateral Diffusion

Rates

(A and B) Robustness landscapes are projected

onto a two-dimensional parameter space repre-

senting either (A) component concentrations,

defined relative to the total number of binding

sites, or (B) component lateral diffusion rates,

defined as dimensionless ratios relative to the

basal binding rate kon. Projections are visualized

as heatmapswith robustness indicated by color. In

both cases, minimal motifs alone (i–iv) can polarize

robustly only in small, limited regions of parameter

space, whereas topologies consisting of motif

combinations (v–viii) can polarize robustly in

expanded regions of parameter space.

(C) Combining minimal motifs into more com-

plex circuitry enables self-organizing polarization

over larger ranges of parameter values and thus

increases the topology’s robustness to parameter

variations.

See Figure S3.
regulatory link strengths were varied (Figure S3), combinatorial

networks drove polarization with higher tolerance to parameter

variations. In all three situations, a topology containing all three

minimal motifs is the most robust (Figure 3C).

Engineering Synthetic PIP3 Polarization in Yeast:
Building New Regulatory Interactions Using
Combinations of Modular Localization and
Catalytic Domains
Our computational analysis defines the landscape of possible

polarization circuits and provides a guide for the design of new

polarization circuits. To test these findings, we attempted to

construct synthetic polarization circuits and to systematically

probe the in vivo requirements for spatial self-organization.

We chose the membrane-associated phospholipid species,

phosphatidylinositol (3,4,5)-trisphosphate (PIP3), as a polarity

marker in S. cerevisiae (Figure 4A). Although PIP3 is an important

polarization marker in higher eukaryotic cells, PIP3 is not nor-

mally present in budding yeast (Dove et al., 1997; Rodrı́guez-

Escudero et al., 2005). The total amount of PIP3 in yeast can

be controlled by expressing lipid kinases and phosphatases

from higher eukaryotes: PI3 kinase (PI3K), which converts PIP2
324 Cell 151, 320–332, October 12, 2012 ª2012 Elsevier Inc.
to PIP3, and PTEN, the lipid phosphatase

that converts PIP3 to PIP2 (Rodrı́guez-Es-

cudero et al., 2005). Thus, variants of

these enzymes could be engineered to

act as specific regulatory links controlling

PIP3 generation and degradation if we

could find a way to spatially target their

activities. The spatial distribution of PIP3

can also be easily tracked with an in vivo

reporter (the PH domain of Akt).

To build specific spatially controlled

links in PIP3 regulatory circuits, we fused

the catalytic domains from PI3K or
PTEN to different localization domains (Figures 4B, 4C, and

S4). For example, to generate a positive feedback regulatory

link for PIP3, we fused a PIP3-binding domain (PHAkt) to the

PI3K catalytic domain (p110a). This fusion protein should

produce more PIP3 at a location that already has PIP3 (i.e., ‘‘IF

PIP3, THEN make more PIP3’’). Using this strategy, fusion

proteins made from combinations of localization and catalytic

domains can be used to create diverse spatially controlled regu-

latory links in a PIP3-generating network.

A fusion protein will only function as a conditional regulatory

link if its catalytic functiondependson its localization.Wedemon-

strated that the PI3K catalytic domain does not produce PIP3 at

the membrane unless properly localized. Expression of the cata-

lytic domain alone does not lead to membrane localization of a

PIP3 reporter, 23PHAkt-23GFP (Figure 4C). However, whenPI3K

is targeted to the plasma membrane (where PIP2 is present),

PIP3 is produced. Similar localization-dependent function is

observed for thePTENphosphatase catalytic domain (FigureS4).

To create a second regulatory node to serve as an inhibitor of

the polarizing molecule, we utilized the endogenous GTPase

protein Cdc42 as an opposing landmark. Cdc42, which exists

in two distinct states (one active GTP bound and one inactive



GDP bound), is an ideal inhibiting regulatory node. Active Cdc42

localizes to the membrane in a highly polarized manner via

a combination of catalytic- and actin transport-mediated posi-

tive feedback (Figures 4B and 4D) (Kozubowski et al., 2008).

We created synthetic mutually inhibitory links between activated

Cdc42 (Cdc42*) and PIP3 as follows. By fusing a Cdc42* binding

domain (from the protein Gic2) to the PTEN phosphatase

domain, we encoded the regulatory link: ‘‘IF Cdc42* THEN

dephosphorylate PIP3.’’ Conversely, by fusing a PIP3 binding

domain (PHAkt) to a Cdc42 GAP domain (inactivates Cdc42*)

from the protein Rga1, we could encode the following regulatory

link: ‘‘IF PIP3, THEN inactivate Cdc42*.’’

We generated a set of chimeric enzymes corresponding to the

regulatory links in the coarse-grained model (Figure 4D). By

selectively transforming combinations of enzymes from this set

of links into yeast, we recreated a subset of the topologies iden-

tified through our computational analysis. We could alter the

strength of individual links in the circuit by altering the strength

of the constitutive promoter used to express each synthetic

fusion protein.

To detect the distribution of PIP3 in cells containing these

synthetic circuits, we expressed a reporter protein consisting

of a fluorescent protein fused to a domain that binds PIP3

(23PHAkt-23GFP). To simplify the automated analysis of polari-

zation, we pretreated the cells with the drug Latrunculin A (LatA),

which disrupts actin polymerization, thus preventing budding

and resulting in cells that maintained their shape over a longer

period of time (hours). LatA also disrupts the actin transport-

based positive feedback on Cdc42* (Ayscough et al., 1997) but

leaves the Bem1/Cdc24 protein-based positive feedback loop

intact (Ziman et al., 1993; Wedlich-Soldner et al., 2003, 2004;

Kozubowski et al., 2008).

We classified cells bearing these synthetic circuits into three

phenotypes (Figure 4E): (1) no visible PIP3 (and therefore no

PIP3 pole), (2) PIP3 observed throughout the plasma membrane

(no pole), or (3) a concentrated region of PIP3 (a PIP3 pole). We

used a simple metric for the polarity score: the ratio of the

maximum to the mean cell edge intensity minus one (see Fig-

ure S4B for more detail). The fraction of PHAkt-GFP recruited to

the membrane (indicating PIP3 production) was also calculated

and termed the ‘‘production score.’’ Cells with a low average

production score (<0.3) were classified as ‘‘no PIP3.’’ Those

cellswith a higher production scorewere divided into ‘‘polarized’’

(maximumobservedpolarity score> 0.5) and ‘‘PIP3 everywhere.’’

Synthetic Circuit that Includes Positive Feedback
and Mutual Inhibition Can Generate Artificial PIP3

Poles in Living Cells
Our model predicted the combination of all three minimal motifs

to be the most robust to variations in component concentration

and diffusion rates. We implemented this three-motif combina-

tion circuit by expressing all of the components of our enzymatic

toolkit in one strain: PIP3 positive feedback (PI3K-PHAkt),

dephosphorylation of PIP3 in response to Cdc42* (CRIBGic2-

PTEN), and deactivation of Cdc42* in response to PIP3 (PHAkt-

GAPRga1). This circuit combined synthetic positive feedback on

PIP3 with mutual inhibition between PIP3 and Cdc42* (Cdc42*

also has native positive feedback regulation). This combinatorial
circuit was expected to be the most robustly performing network

and thus the easiest network to implement without parameter

fine-tuning.

As predicted, many (65%) of the cells expressing these three

synthetic signaling proteins exhibit strong PIP3 poles (Figure 5A).

Two-dimensional time-lapse images (Figures 5B and S5) show

that the poles are relatively stable, lasting for tens of minutes. A

three-dimensional reconstruction of one of these synthetic PIP3

poles is shown in Movie S1 and Figure 5D. Analysis of cells that

have not been treated with LatA shows that PIP3 poles are

located roughly opposed to the bud, where Cdc42* is localized

(Figures 5A and S6A). More detailed three-dimensional recon-

structions of confocal time courses show that PIP3 polarization

is, overall, highly persistent. In some cases, stable PIP3 polariza-

tion is observed formore than 45min (Movie S2A; 50min inMovie

S2D). The PIP3 poles, however, are also dynamic, appearing/dis-

appearing or dividing/fusing on the minute timescale as well as

moving rapidly throughout the plasma membrane (Movie S2).

Thus, two-dimensional time analysis probably underestimates

pole persistence, as poles move out of the plane of focus.

For comparison, we also constructed an identical circuit lack-

ing the mutual inhibitory links (PIP3 positive feedback only). To

assess the frequency of polarization in both types of circuits,

we analyzed �70 cells for each circuit and measured their

polarity scores. The cells containing the three-motif circuit

showed a distribution with high polarity scores; cells containing

only the PIP3 positive feedback motif were all clustered at low

polarity scores (Figure 5C). Cells with positive feedback alone

occasionally had weak poles (polarity score R 0.5), but cells

with the full circuit had stronger poles with a much higher

frequency. Only 5% of cells with positive feedback alone ex-

hibited poles, with most having PIP3 everywhere on the plasma

membrane. In cells with the engineered three-motif circuit,

65% of cells had PIP3 poles, many of which were much stronger

than any seen with positive feedback alone. In addition, polariza-

tion in the three-motif circuit persisted longer than polarization in

cells expressing positive feedback alone (Figure S6B).

Requirements for Synthetic Polarization: Analysis
of Circuit Variants Underscores the Importance
of Combinatorial Motifs
We explored the circuit requirements for PIP3 polarization, per-

turbing individual circuit links in our designed networks by either

omitting them or altering the expression levels of the equivalent

fusion protein. As described in the previous section, cells ex-

pressing only the PIP3 positive feedback loop (PI3K-PHAkt)

from a medium strength promoter (pCyc1) did not show signifi-

cant polarization. However, our model suggested that this class

of circuit could generate polarization but would only do so in

limiting concentration regimes (Figure 3A, i). A small amount of

PI3K-PHAkt could create an initial quantity of PIP3 stochastically,

as the enzyme encounters its substrate PI(4,5)P2 incidentally

(without recruitment). This initial PIP3 would be amplified by posi-

tive feedback as PI3K-PHAkt is recruited and would phosphory-

late nearby lipids. This positive feedback loop could generate

transient PIP3 polarization. If the concentration of the positive

feedback node (PI3K-PHAkt) is too high, however, PIP3 is likely

to overtake the membrane symmetrically. We varied the
Cell 151, 320–332, October 12, 2012 ª2012 Elsevier Inc. 325
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Figure 4. Construction of a Synthetic Polarization System Using PIP3, a Phospholipid Not Normally Found in S. cerevisiae

(A) Phosphatidylinositol (4,5)-bisphosphate (PIP2) can be reversibly phosphorylated to become PIP3.

(B) Modular localizationdomainscanbe fused tocatalyticdomains todirect enzymeactivity to specific subcellular locations.Pleckstrinhomology (PH)domainsbind

specificphospholipid headgroups, and theCRIB (Cdc42/Rac interactivebinding) domain ofGic2 localizes to activatedCdc42 (herein denoted asCdc42*). Catalytic

domainswere truncated ormutated to achieve localization-dependent activity. Expressionwas tuned using a set of different strength constitutive yeast promoters.

(C) PI3K does not produce PIP3 unless localized by the PH domain of PLCd (PHPLCd) to its substrate, PIP2, at the plasmamembrane. The PH domain of Akt (PHAkt)

fused to mCherry is used as a reporter for PIP3. See also Figure S4.

(D) Using the localization and catalytic domains described above, a toolkit of enzymatic fusions is created analogous to the regulatory links in the computational

model. Using this toolkit, we experimentally tested a subset of the predicted core network topologies and determined the resulting phenotypes.
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expression level of the PIP3 positive feedback fusion protein

alone using different constitutively active promoters (Figure 6A).

In this designed circuit, PIP3 and the positive feedback fusion

protein (PI3K-PHAkt) can be considered to be a single virtual

node, in which the concentration of the fusion protein has the

potential to be limiting.

We observed that cells with lowest expression of the PIP3

positive feedback regulatory link alone (weak promoter: pIno4s)

showed higher frequencies of polarization; at the lowest concen-

tration of positive feedback, one in four cells polarized (Fig-

ure 6A). As the expression level of PI3K-PHAkt increased, fewer

cells displayed polarization and instead showed more uniform

PIP3 over their plasma membrane. Thus, the positive feedback

only circuit can yield polarization but is highly sensitive to

enzyme concentration, consistent with theoretical predictions

(Figure 3A, i) and previous work (Altschuler et al., 2008). In kinetic

experiments, when positive feedback alone (pGal10-PI3K-PHAkt

expression) is rapidly induced, PIP3 polarization can be tran-

siently observed before PIP3 becomes distributed throughout

the plasma membrane (Figure S6C).

Next, we dissected which interactions allowed the full three-

motif circuit (Figure 5A) to produce robust PIP3 poles. We con-

structed a series of circuit variants in which individual regulatory

link proteins were omitted and determined the percentage of

PIP3-polarizing cells. Removal of the PIP3 positive feedback

link resulted in loss of polarization (Figure 6B). Conversely,

induction of PIP3 positive feedback in cells constitutively ex-

pressing the mutual inhibition regulatory links resulted in the

rapid induction of strong polarization (Figure S6D). Moreover,

expression of the mutual inhibitory links with a version of PI3K

that is either cytoplasmically or plasma membrane targeted

(but not positive feedback regulated) also failed to yield polariza-

tion (Figures 6B and S7B). Thus, despite the intrinsically strong

polarization of Cdc42*, the mutual inhibition circuit between

PIP3 and Cdc42* alone is not sufficient to confer robust PIP3

polarization (Figures 6B and S7B).

Based on this link deletion analysis, positive feedback on PIP3

andcross-inhibition fromCdc42* toPIP3 seemtobe themost crit-

ical links in thenetwork, consistentwithourcomputational results.

The PIP3-to-Cdc42* inhibitory link appears less critical than pre-

dicted by modeling, perhaps because Cdc42* is endogenously

a strong pole that may not require the additional spatial sharp-

ening of this inhibitory link. The combinatorial two- or three-motif

circuit that balances self-propagation with competition appears

to be a circuit that is optimized for robust performance, rather

than an overly complex solution to a simple biological problem.

DISCUSSION

Design Principles of Self-Organizing Cell Polarization
In this study, we computationally defined the rules capable of

driving self-organizing cell polarization. In the full space of simple
(E) Using 23PHAkt-23GFP as a reporter, we classify cells into three phenotypes: n

of PIP3 (see Extended Experimental Procedures). Fluorescence images of individ

membrane are plotted (red dots, right). The maximum intensity along the cell mem

cell without PIP3 (top) displays uniform, low-intensity background fluorescence a

intensity fluorescence along its edge. A cell with a PIP3 pole (bottom) has a fluor
two-node network topologies, there are eight core topologies

that are capable of producing polarization, constructed using

three minimal network motifs. Although the minimal motifs

achieve polarization, each only functions in a limited and distinct

regime of parameter space. Thus, if one builds the simplest

possible polarizing system using one of these minimal motifs,

there will be a tradeoff of having limited tolerance to parameter

variation.

Combining minimal motifs into more complex networks

expands the parameter space over which the system is func-

tional. The theoretical solution most robust to variations in

component concentrations, lateral diffusion rates, and regula-

tion strengths was the combination of all three minimal motifs.

Using these principles as a guide, we built synthetic polarization

circuits in yeast that yielded PIP3 polarization. Consistent

with our computational analysis, a circuit combining all three

minimal motifs displayed strong and sustained PIP3 poles

more frequently than the minimal motifs alone. Intuitively, these

results suggest that the combination of self-propagation

(positive feedback) balanced by competition with an opposing

molecule (mutual inhibition) is one of the most robust ways to

define a spatially asymmetric domain. In our experiments, we

sampled a relatively small set of points throughout concentra-

tion space using the limited range of promoters available.

Further varying or tuning the relative concentrations of each

regulatory link could further optimize the behavior of these

circuits.

Comparison to Natural Polarization Circuits
Our results suggest that natural cell polarization systems would

tend to converge upon the more robust network topologies.

Although natural cell polarization circuits often have highly

complex architectures, examination reveals that many of these

systems consistently have a combination of positive feedback

and mutual inhibition at their core (Figure 7). In C. elegans

embryos, the asymmetric localization of distinct proteins to the

anterior and posterior domains is critical for proper development

(Figure 7A) (Goldstein and Macara, 2007; St Johnston and

Ahringer, 2010; Nance and Zallen, 2011). The anterior Par6/

Par3/PKC-3 complex enhances its own cortical flow to the ante-

rior domain of the embryo, effectively implementing a positive

feedback loop that is critical for polarization (Munro et al.,

2004). At the same time, phosphorylation of the posterior

proteins Par2 and Lgl by PKC-3 inhibits their association with

the anterior cortex (Hao et al., 2006; Hoege et al., 2010),

providing one branch of cross inhibition. The posterior protein

Par2 recruits Par1, preventing the localization of the anterior

Par complex to the posterior cortex and supplying opposing

mutual inhibition (Cuenca et al., 2003; Hao et al., 2006). Similarly,

Lgl also inhibits the localization of the anterior Par complex to the

posterior by a process of ‘‘mutual elimination’’ (Beatty et al.,

2010; Hoege et al., 2010). Thus, the C. elegans embryo
o visible PIP3, PIP3 everywhere on the plasma membrane, and a localized pole

ual cells are cropped to contain only one cell, and pixel intensities at the cell

brane (solid black line) is used to calculate the polarity score (see Figure S4). A

long its periphery. A cell with PIP3 everywhere (middle) displays uniform high-

escence intensity peak indicating a local concentration of PIP3 (red arrow).
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Figure 5. Experimental Design of Synthetic PIP3 Polarization Networks

(A) Three regulatory links were introduced into a yeast strain by expressing all three synthetic fusion proteins from our toolkit (Figure 4D). Several cells in one field

of view show PIP3 polarization with this most robust combination of polarization motifs (upper-right). In most cases, cells were treated with 5 mg/ml Latrunculin A

(LatA) before imaging to prevent budding. When omitting LatA treatment, PIP3 (green) polarizes away from the bud site (phase), where Cdc42* is concentrated.

(B) Time course of PIP3 polarization demonstrates that they are dynamic but can persist for more than tens of minutes (10 min intervals between images).

(C) Histograms of polarity scores (PS). Positive feedback alone (top) produces a small number of weak poles. The three-motif (bottom) combination produces

significantly larger numbers of strong poles. Example images of a range of polarity scores are shown. N indicates the number of individual cells analyzed with each

network topology. Maximum polarity score for each cell through observation is shown. See also Figures S5 and S6.

(D) A three-dimensional rendering of a cell with polarized PIP3 (see also Movies S1 and S2).
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Figure 6. Network Topologies with Motif

Combinations Produce PIP3 Polarization

More Frequently, Demonstrating Their In-

creased Robustness

(A) Using different strength promoters, we varied

the level of PI3K-PHAkt expression. With positive

feedback alone, low expression of PI3K-PHAkt

produces more PIP3 poles than high expression of

PI3K-PHAkt (top). High expression of PI3K-PHAkt

floods the membrane with PIP3, eliminating

polarization (bottom). Differences in polarization

frequency between low and medium PI3K-PHAkt

expression (starred) are significant with p < 0.005

(Fisher’s two-tailed exact test).

(B) Circuits expressing only the mutual inhibition

minimal motif do not lead to strong PIP3 polariza-

tion, even when PI3K is tethered to membrane

constitutively via CAAX motif fusion (without

positive feedback). Thus, addition of a positive

feedback link for PIP3 synthesis is necessary for

strong polarization.

(C) A combination of minimal motifs leads to a

higher frequency of PIP3 poles compared to

positive feedback alone. Starred bars are signifi-

cantly different than positive feedback alone with

p < 0.001 (Fisher’s two-tailed exact test). See

Figure S4 for details on how polarization is

measured and Figures S5 and S7 for additional

polarization time courses and score histograms.
polarization system employs a motif-combination circuit that is

predicted to be more robust.

Other polarization systems also reveal regulatory networks

with a similar combination of positive feedback and mutual

inhibition. These include polarization of Drosophila oocytes (Fig-

ure 7B) and epithelial cell polarization (Figure 7C) (Goldstein

and Macara, 2007; St Johnston and Ahringer, 2010; Nance

and Zallen, 2011). Likewise, the self-organization of Rac1 and

RhoA proteins to opposite poles in migratory cells such as

neutrophils, fibroblasts, and Dictyostelium is directed by a regu-

latory circuit containing positive feedback and mutual inhibition

(Xu et al., 2003; Charest and Firtel, 2007; Iden and Collard,
Cell 151, 320–332,
2008; Swaney et al., 2010). Recent

studies in yeast suggest that Cdc42

polarization also involves a combination

of positive feedback and negative regula-

tion (Howell et al., 2012). Such combina-

torial architectures may allow cell polari-

zation systems to operate under a wide

range of conditions.

Circuit Enumeration to Define
Design Principles of Spatial
Organization
The goal of most cell polarization models

has been to explain the observed

behavior of naturally polarizing systems.

In this study, we adopted a different but

complementary bottom-up approach

and looked for all possible solutions to
the problem of cell polarization. We intentionally used network

topologies containing abstract nodes and components instead

of modeling specific proteins from specific polarization path-

ways in order to explore the general design principles of cell

polarization in a system agnostic way.

Though our approach is different from previous studies on cell

polarization, we recover many of the earlier findings. As an

example, in our study, positive feedback alone only generates

polarization when the concentration of polarity marker is limiting,

similar to a framework in which global inhibition is implemented

via a limiting pool of substrate (Gierer and Meinhardt, 1972).

Without this constraint, positive feedback will symmetrically
October 12, 2012 ª2012 Elsevier Inc. 329
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Figure 7. Network Topologies Consisting ofMotif Combinations Are

Found in Many Well-Studied Polarization Pathways

(A and B) In (A) C. elegans embryos and (B) Drosophila oocytes, the estab-

lishment of the anterior and posterior domains is driven by a network topology

that combines positive feedback with mutual inhibition.

(C and D) Similar network topologies are also thought to robustly generate (C)

apical and basolateral domains in Drosophila and mammalian epithelial cells

as well as (D) the fronts and backs of migrating cells.
saturate the membrane with polarity markers. The minimal motif

of an inhibitor with positive feedback also requires a limiting

concentration of inhibitors in order to polarize. The polarity

marker becomes polarized as a consequence of the inhibitor’s

spatial organization.

Our observation that mutual inhibition is the third minimal

motif in polarization networks is also consistent with several

previous studies. In studies of mutual inhibition in the absence

of positive feedback, mutual inhibition alone has spontaneous

polarization capability but only in small regions of parameter

space (Gamba et al., 2005; Narang, 2006). Other groups

have speculated that mutual inhibition is a useful motif when

a system needs to generate both a front and a back simulta-

neously, as in the case of a migrating cell (Narang, 2006; Onsum

and Rao, 2007).

Our theoretical analysis is broadly consistent with previous

studies, but we further defined the parameter conditions under

which each of the minimal motifs is capable of polarization. In

doing so, we mapped the robustness landscape of polarization

topologies, identifying regions of network space with the highest

likelihood of polarization. This network space is smooth, with

clusters of network topologies capable of polarization andmotifs

that combine to produce the most robust polarization. The

smoothness of this landscape suggests that an evolutionary
330 Cell 151, 320–332, October 12, 2012 ª2012 Elsevier Inc.
random walk could converge on the same combinatorial

networks as solutions for cell polarization.

Designing Synthetic Polarization: Global Organization
by Programming Local Molecular Interactions
One of the most exciting aspects of this work is our use of

computational results as a design guide for constructing an

artificial polarization circuit in yeast that yields PIP3 poles. Our

theoretical predictions pointed us to the set of regulatory

networks with the highest probability of achieving a desired

function, greatly streamlining the design process. These findings

also demonstrate that it is possible to harness the molecular

programming language of self-organization to generate cell

polarization. Spatial control circuits can be constructed from

simple protein signaling modules by localizing specific catalytic

functions to diverse spatial targets. The modular separation of

catalytic and localization functions makes the creation of new

spatial regulatory links relatively straightforward. These types

of molecular modules could potentially be harnessed by

synthetic biologists to program even higher-order cellular

structures from the bottom up, such as complex cellular

morphologies or even multicellular structures. Because cell

polarization is a fundamental building block for many of these

complex structures, understanding its design principles is

critical for learning the rules that can control cell shape, move-

ment, and assembly.

EXPERIMENTAL PROCEDURES

Computational Framework

The plasma membrane was modeled as a 1D periodic lattice of size 100. Each

lattice location has a single polarity marker membrane-binding site (A) and a

single regulator membrane-binding site (B). The cytosol was treated as a

well-mixed reservoir.

The system evolved over the course of the simulation as a result of binding

and dissociation reactions (defined at each lattice location i). Membrane-

bound A and B diffused laterally on the membrane with rates DA and DB,

respectively. Reaction rates were functions of basal reaction rates and the

strengths of the regulatory links in a particular network topology. Local

concentrations of membrane-bound signaling components near a lattice loca-

tion modulate the binding and dissociation rates of signaling components at

that lattice location, weighted by the strengths of the regulatory links.

For each network topology, we used the Latin hypercube method to

generate 10,000 sets of parameter combinations representing the concen-

trations, lateral diffusion rates of each signaling component, and strengths

of all nonzero regulatory links (Table S1) (McKay et al., 1979). We simulated

each of these parameter combinations using a spatially extended variant of

Gillespie’s stochastic simulation algorithm (Gillespie, 1977). After the system

reached a steady state, we calculated a polarity score for each simulation

run using the metric described in the main text. Refer to the Extended

Experimental Procedures for equations and further details on our computa-

tional methods.

Construction and Expression of Plasmids

Fragments encoding key domains were amplified from a plasmid or genomic

DNA using PCR (Table S2), ligated into a ‘‘donor’’ vector, digested with the

restriction enzyme AarI, and ligated into a yeast-integrating vector containing

a promoter and terminator using the combinatorial cloning method described

in Peisajovich et al. (2010). Yeast-integrating vectors were linearized and

transformed into yeast strains (Table S3). Yeast cultures were grown with

shaking in synthetic complete media overnight at 30�C and diluted 1:100

into fresh media the morning of the experiment. Cells were grown for 3–5 hr



before imaging. See the Extended Experimental Procedures and Tables S4

and S5 for additional details.

Imaging Conditions

96-well glass-bottomed plates were coated with Concanavalin A and washed

twice with sterile water. Cells were sonicated briefly, Latrunculin A (5 mg/ml)

was added, and then cells were spun down into coated 96-well plates. Cells

were imaged on a Nikon TE-2000 with a Nikon Apo TIRF 1003 objective every

10 min for up to 3 hr. Four images were taken at each time point: one out-of-

focus image (used for cell edge detection), one in-focus bright-field image, one

mCherry fluorescence image, and one GFP fluorescence image. NIS Elements

files were converted into TIFF stacks with ImageJ and read into Matlab (Math-

works) for edge detection and analysis. Refer to the Extended Experimental

Procedures for more details.

Automated Detection of Polarization

Isolated cells without buds were selected for analysis. The plasma membrane

was automatically detected using custom image processing software (Mat-

lab). Pixel intensities within the membrane mask were recorded as a function

of q (Figure S4). The ratio between the maximum (Amax) and average (Amean)

PIP3 signal around the membrane minus one was the ‘‘polarity score.’’ PHAkt

recruitment was calculated as the ratio of total fluorescence at the membrane

versus within the whole cell (‘‘production score’’).
SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, seven
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