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Abstract

The extent by which different cellular components generate phenotypic diversity is an ongoing debate in evolutionary
biology that is yet to be addressed by quantitative comparative studies. We conducted an in vivo mass-spectrometry study
of the phosphoproteomes of three yeast species (Saccharomyces cerevisiae, Candida albicans, and Schizosaccharomyces
pombe) in order to quantify the evolutionary rate of change of phosphorylation. We estimate that kinase–substrate
interactions change, at most, two orders of magnitude more slowly than transcription factor (TF)–promoter interactions. Our
computational analysis linking kinases to putative substrates recapitulates known phosphoregulation events and provides
putative evolutionary histories for the kinase regulation of protein complexes across 11 yeast species. To validate these
trends, we used the E-MAP approach to analyze over 2,000 quantitative genetic interactions in S. cerevisiae and Sc. pombe,
which demonstrated that protein kinases, and to a greater extent TFs, show lower than average conservation of genetic
interactions. We propose therefore that protein kinases are an important source of phenotypic diversity.
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Introduction

Genetic variation, in the form of point mutations, gene

duplication/loss, and recombination serves as the raw material

upon which natural selection acts during the evolution of a species.

To understand this evolutionary process, we must in turn be able to

understand how this variation translates into phenotypic changes

that have a measurable impact on fitness. The great advances in

DNA sequencing and comparative genomic analysis have brought us

tremendous insight into the organization of genomes and the extent

of genomic variation across species [1–4]. Similarly, gene expression

studies have recently been used to study the evolution of

transcriptional regulation [5–7]. Still, expression levels offer a very

limited view of the inner workings of the cell. Other technologies are

now maturing that allow us to analyze, in high-throughput fashion,

how molecular components such as proteins are modified [8–11]

and interact, either physically [12–18] or genetically, to enable the

cell to carry out its essential functions.

Recently, comparison of protein interaction networks in

different species has been used to propose that protein–protein

interactions change at a fast evolutionary rate after gene

duplication [19,20]. In particular, interactions of lower specificity,

such as those mediated by short linear motifs (i.e., peptide-binding

domains), were postulated to have a higher rate of change and

might therefore display greater potential to generate functional

diversity [20,21]. In parallel with these efforts, the study of

particular cellular functions has provided us with fascinating

examples of the evolution of cellular interactions [22,23]. Tsong

and colleagues [23] have shown that although the mating

processes in Saccharomyces cerevisiae and Candida albicans are

phenotypically similar (both controlled by a conserved MAT

locus), the regulatory arrangements that specify the mating types

are different. These authors were able to trace mutations in one of

the proteins involved (alpha-2) that have contributed to the

changes in regulation. Similarly, Moses and colleagues have shown

that regulation of the nuclear localization of the MCM complex by

Cdk phosphorylation of Mcm3 was acquired in the Saccharomyces

lineage but does not occur in C. albicans [22]. Therefore, solutions

to evolutionary problems, originating at the DNA level, may be

manifested in different ways at the protein network level. In this

study, we focus on the role of one of these mechanisms, that of

protein phosphorylation.

Protein phosphorylation is a ubiquitous and reversible modifi-

cation that is crucial for the regulation of cellular events [24].

Protein kinases phosphorylate their peptide substrates by recog-

nizing motifs that consist of a few key residues surrounding the
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target amino acid. The high regulatory and evolutionary potential

of protein kinases make protein phosphoregulation a prime

candidate for evolutionary studies. Recent technological develop-

ments now permit us to comprehensively study the in vivo

phosphorylation of proteins for multiple species [8–10,25,26].

Comparison of these results shows that they contain significant

overlap that relates to species taxonomy [27]. However, this

approach has not yet been used to study the evolution of

phosphoregulation on a large scale.

We have carried out a mass spectrometry (MS) analysis of the in

vivo phosphoproteome of three fungal species (S. cerevisiae, C.

albicans, and Schizosaccharomyces pombe), and we used these data to

generate a cross-species analysis of phosphoregulation. We

quantified the rate of evolutionary change of protein phosphor-

ylation and analyzed the divergence of kinase–substrate interac-

tions for particular protein complexes. Finally, we tested and

validated the observed evolutionary trends through comparative

genetic interaction studies.

Results

The Phosphoproteome of S. cerevisiae, C. albicans, and Sc.
pombe

We used a MS approach to globally determine the in vivo

phosphorylation status of the S. cerevisiae, C. albicans, and Sc. pombe

proteomes under exponential growth in rich media. The dataset is

of high quality, with false positive rates (FPRs) varying from 1.3–

1.7% (see Methods). In total we could identity 1,185, 1,449, and

850 phosphoproteins in S. cerevisiae, C. albicans, and Sc. pombe,

respectively, and within these, we identified 3,486, 4,715, and

1912 phosphosites (Table 1 and Dataset S1). The distributions of

phosphorylation in these three screens among serine, threonine,

and tyrosine is similar to those observed previously for studies in

budding yeast [9,26,28,29] with the majority of phosphorylation

occurring at serine (73–83%), followed by threonine (15–25%),

and small numbers of tyrosines (0.8–1.9%). The small fraction of

detected phosphotyrosines is expected given the absence of

identifiable tyrosine kinases in these species.

To estimate the coverage of these datasets, we calculated the

overlap with previous phosphorylation studies of S. cerevisiae

[9,26,28,29] and Sc. pombe [10]. The estimated coverage of our

phosphorylation sets ranges from 51–71% for detection of

phosphoproteins, 43–62% for detection of phosphorylated pep-

tides (10-amino acid peptide), and 20–31% for correct detection of

previously known phosphosites (see Protocol S1). One potentially

confounding effect is abundance bias in the determination of

phosphoproteins, with phosphoproteins being potentially over- or

under-sampled because they are more or less abundant than other

proteins. To address this issue, we used experimentally determined

concentration values that were systematically generated for

individual proteins in S. cerevisiae [30]. Although phosphorylated

proteins are on average three times more abundant when

compared to all others (p-value = 6.3610213 with a t-test), this

difference is small compared to the eight orders of magnitude

spanned by the abundance of all proteins. In fact, the known

phosphoproteins also span similar orders of magnitude (Protocol

S1), and therefore this small abundance bias is unlikely to explain

observed differences in protein phosphorylation across the

different species.

Therefore, we assembled a high-quality cross-species phospho-

protein database that is suitable for addressing questions

concerning the evolution of phosphoregulation.

Global Rates of Change in Phosphoregulation
Using this dataset, we first attempted to quantify the rate of

change of individual phosphoproteins across species to estimate

the rate at which species change kinase–substrate interactions

during evolution. To calculate this rate, we first compiled the

majority of previously published in vivo protein phosphorylation

data generated for S. cerevisiae [9,26,28,29]. The coverage of the

combined set (estimated using leave-one-out analysis) ranged from

81–92%, indicating that the combined set of 1,956 S. cerevisiae

phosphoproteins is reaching completeness, at least for exponential

growth in rich medium with currently available MS approaches.

We assumed an estimated coverage of 92% and used the

phosphorylation information for other species to calculate the

rate of change of protein phosphorylation during evolution

(Table 2, Methods). For each test species, we calculated the

number of phosphoproteins expected to be observed in S. cerevisiae

by homology as 92% of the number of orthologous phosphopro-

teins in that species. We then defined as the number of

evolutionary changes in phosphorylation the difference between

the observed conserved phosphoproteins and the expected value

by homology.

We estimated that, on average, 161024 proteins changed their

phosphorylation status per protein per million years (My).

Assuming that the gain or loss of a phosphoprotein corresponds

to the gain or loss of up to five kinase–substrate protein–protein

interactions, we estimate that kinase–substrate interactions change

Author Summary

Natural selection at a population level requires phenotypic
diversity, which at the molecular level arises by mutation
of the genome of each individual. What kinds of changes
at the level of the DNA are most important for the
generation of phenotypic differences remains a funda-
mental question in evolutionary biology. One well-studied
source of phenotypic diversity is mutation in gene
regulatory regions that results in changes in gene
expression, but what proportion of phenotypic diversity
is due to such mutations is not entirely clear. We
investigated the relative contribution to phenotypic
diversity of mutations in protein-coding regions compared
to mutations in gene regulatory sequences. Given the
important regulatory role played by phosphorylation
across biological systems, we focused on mutations in
protein-coding regions that alter protein–protein interac-
tions involved in the binding of kinases to their substrate
proteins. We studied the evolution of this ‘‘phosphoregu-
lation’’ by analyzing the in vivo complement of phosphor-
ylated proteins (the ‘‘phosphoproteome’’) in three highly
diverged yeast species—the budding yeast Saccharomyces
cerevisiae, the pathogenic yeast Candida albicans, and the
fission yeast Schizosaccharomyces pombe—and integrating
those data with existing data on thousands of known
genetic interactions from S. cerevisiae and Sc. pombe. We
show that kinase–substrate interactions are altered at a
rate that is at most two orders of magnitude slower than
the alteration of transcription factor (TF)–promoter inter-
actions, whereas TFs and kinases both show a faster than
average rate of functional divergence estimated by the
cross-species analysis of genetic interactions. Our data
provide a quantitative estimate of the relative frequencies
of different kinds of functionally relevant mutations and
demonstrate that, like mutations in gene regulatory
regions, mutations that result in changes in kinase–
substrate interactions are an important source of pheno-
typic diversity.
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at a rate of approximately 161026 to 161025 interactions per

protein pair per My (Methods). Interestingly, these estimates are

similar to previously calculated rates of change for protein–protein

interactions after gene duplication [19,20].

This value likely represents a lower bound estimate, because

changes of kinase–substrate interactions can occur without

changing the total number of phosphoproteins. We next

considered that evolutionary changes in phosphosite position

should also be considered a change of kinase regulation. To

estimate the rate of change in kinase–substrate interactions

considering also changes in phosphosite locations, we aligned S.

cerevisiae proteins to their corresponding orthologs in other species

using a general purpose sequence alignment tool (TCoffee, http://

www.tcoffee.org). We considered that a phosphosite in an

orthologous protein had diverged when no phosphosite was

observed in the S. cerevisiae protein within an alignment window

ranging from 20 to 200 alignment positions centered on the

phosphosite of the orthologous protein. The rate of change of

kinase–substrate regulation calculated in this way is 5 to 7 times

faster (depending on the alignment window size) than the same

calculations based on the phosphorylation status of the full

proteins.

Our calculations can be compared with estimates for the rate of

change of transcriptional regulation. This rate can be obtained

from data of binding of three transcription factors (TFs) to

promoter regions for different yeast species [17,18], and similar

information available for human and mouse [31]. Based on these

studies, we estimate that TF binding to promoters change at an

order of 161024 to 361024 per TF–gene interaction per My, at

most two orders of magnitude faster than kinase-substrate turnover

(Methods and Protocol S1).

Relative Levels of Phosphorylation of Protein Complexes
and Functional Groups

The results above suggest that, as a whole, kinase–substrate

interactions can change quickly during evolution. We then asked if

functionally related sets of proteins show significant differences in

level of phosphorylation across species. We transferred the gene

ontology and protein complexes information available for S.

cerevisiae to other species using orthology assignments. In this way,

we defined, for each species, sets of proteins grouped according to

their functional categories or protein complex membership. We

then calculated the number of phosphosites per protein within

each group, normalized by the average number of phosphosites

per protein in the proteome. We observed a generally high

correlation of the number of phosphosites per protein across

different functions for all three species studied (Figure 1A). For

instance, proteins involved in budding, cytokinesis, and signal

transduction, which are well known to be processes regulated by

phosphorylation, were highly phosphorylated in the three yeast

species. We can conclude, therefore, that although individual

kinase–substrate interactions might change quickly, phosphoryla-

tion levels within specific processes are highly conserved, even for

the relatively large divergence times considered here.

Importantly, we could also use this information to discover

functions and complexes that show significant changes in the

average number of phosphosites per protein across species

(Figure 1B and 1C and Methods). We identified 12 functional

Table 1. Summary of phosphoproteins and phosphosites determined by MS analysis.

Species Total proteins Total phosphoproteins Total phosphosites
Phospho
Serines (%)

Phospho
Threonines (%)

Phospho
Tyrosines (%)

S. cerevisiae 6,333 1,185 3,486 2,533 (72.7%) 887 (25.4%) 66 (1.9%)

Sc. pombe 4,965 850 1,912 1,582 (82.7%) 294 (15.4%) 36 (1.9%)

C. albicans 6,685 1,449 4,715 3,640 (77.3%) 1,036 (21.9%) 39 (0.8%)

doi:10.1371/journal.pbio.1000134.t001

Table 2. Rate of change of phosphoproteins and kinase-substrate interactions.

Species Orthologs
Orthologous
kinases Phosphoproteins

Diverged
phos.
proteins

Divergence
time (My)

Phosphoproteins
rate of change
(per protein per My)

Kinase-substrate
rate of change, 1
to 5 int.
(per protein pair
per My)

C. albicans 4,177 53 1,052 322 400 1.961024 3.661026 to
1.861025

Sc. pombe 4,038 70 1,188 377 600 1.661024 2.261026 to
1.161025

Drosophila
melanogaster

2,100 45 423 149 1,200 5.961025 1.361026 to
6.561026

Homo sapiens 2,226 43 257 74 1,200 2.761025 6.561027 to
3.261026

Average — — — — — 1.161024 2.061026 to
9.861026

For each species studies, we calculated the rate of change of phosphoproteins and used this information to estimate the rate of change of kinase–substrate interactions.
We considered only the set of identifiable S. cerevisiae orthologs and kinases that are orthologous to one of the 116 protein kinases of S. cerevisiae. In order to estimate
the rate of change of kinase–substrate interactions, we assumed a gain or loss of a phosphoprotein would create or destroy one to five kinase–substrate interactions.
doi:10.1371/journal.pbio.1000134.t002

Evolution of Phosphoregulation

PLoS Biology | www.plosbiology.org 3 June 2009 | Volume 7 | Issue 6 | e1000134



groups (e.g., cellular respiration, cell budding, pseudohyphal

growth, vitamin metabolic process) and nine complexes (e.g.,

clathrin-associated complex, outer kinetochore complex, H+
transporting v-ATPase, etc.) with significant cross-species variation

in levels of phosphorylation ranging from 1.5 to 7 times the

average number of phosphosites as expected by orthology. For

example, we could detect ten phosphosites in the conserved

proteins of the outer kinetochore complex in S. cerevisiae, whereas

only three were found in Sc. pombe, which was close to four times

less than expected by orthology.

A potential pitfall of analyzing phosphorylation levels as the

number of phosphosites per functional group is that it may miss

cases where phosphorylation levels within that group of proteins

remain the same across species, but the exact proteins that are

phosphorylated have diverged. One striking example of this is the

phosphorylation of the pre-replication complex. Although the level

of phosphorylation of this complex is conserved, the proteins that

are phosphorylated have changed. For this complex, phosphory-

lation of the S. cerevisiae orthologs in Sc. pombe is less conserved than

expected by chance (p-value ,0.005, hypergeometric distribution),

and vice-versa (p-value ,0.04, hypergeometric distribution).

The orthology definitions used include cases of one-to-one

assignments and also cases of one-to-many assignments due to

species-specific gene duplication. For this reason, the functional

groups mapped by orthology from S. cerevisiae to the other fungal

species do not necessarily have the same number of proteins in all

species. Because of this, gene duplication could account for some

of the observed changes in the average number of phosphosites per

protein across species. To examine this, we analyzed the functions

and complexes showing significant differences in phosphorylation

levels that also show significant differences in the number of

proteins assigned to them (Figure 1B and 1C), which applied to six

out of 19 functional groups. However, even in these cases, it is

clear that changes in the total numbers of proteins do not explain

the changes in phosphorylation levels. For example, the expansion

of a respiratory chain complex in C. albicans does not explain the

observed differences in phosphorylation across the three species.

Because protein abundance biases and protein duplication

account for only a small fraction of the observed variation in

phosphorylation, we conclude that most of the changes in the

groups identified here are due to the evolutionary gain or loss of

phosphorylation sites.

Evolution of Phosphoregulation of Yeast Protein
Complexes

Protein complexes are stable assemblies of proteins that

cooperate in the cell to carry out specific functions, many of

Figure 1. Evolution of phosphorylation levels for different functional groups. (A) Proteins of S. cerevisiae, C. albicans, and Sc. pombe were
grouped according to gene ontology functions, and for each function we calculated the fraction of phosphosites per protein normalized by the
average number of phosphosites per protein in the proteome. We plotted the relative levels of phosphorylation of S. cerevisiae functions against the
same measure in C. albicans. The size of each point relates to the relative levels of phosphorylation in Sc. pombe that range from 1.2 to 2.4 arbitrary
units. The individual correlation coefficients among the three species are S. cerevisiae versus C. albicans – R,0.90; S. cerevisiae versus Sc. pombe –
R,0.91; Sc. pombe versus C. albicans – R,0.88. Some functions were consistently found to be highly phosphorylated in all three species (annotated in
the picture). (B and C) Proteins from the three species under study were grouped according to functional categories (B) or complex membership (C).
For each group, the relative levels of phosphorylation were calculated for the three fungal species and represented in the form of a stacked graph.
Those with a significant increase or decrease in phosphorylation are highlighted (see Methods). Asterisk indicates functions/complexes that also show
a significant change in the relative fraction of phosphoproteins. Pound symbol (#) indicates functions/complexes that also show a significant
difference in total number of proteins assigned in the orthologous group in the different species (see also Protocol S1).
doi:10.1371/journal.pbio.1000134.g001
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which are conserved across species [32]. We used the results

presented above to ask whether the regulation of protein

complexes by phosphorylation diverged across the three species.

Compared to the broader ontological groups defined above (that

may encompass more than one pathway), changes in the

regulation of complexes—given their smaller size—might be more

readily explained by changes in regulation by one or a few kinases.

To study the evolution of phosphoregulation and complement the

experimentally derived MS results, we developed a sequence-

based phosphorylation propensity predictor and a kinase–substrate

predictor that allowed us to study lineage specific divergence of

kinase–substrate relationships (see Methods).

To predict the phosphorylation propensity from protein

sequence, we used two different approaches: (1) likelihood ratios

(LRs) for kinase motif enrichment and spatial clustering following

the method of Moses and colleagues [33] and (2) phosphosite

propensity predictions using the GPS 2.0 algorithm [34]. For each

fungal protein sequence, we define the phosphorylation propensity

either as the sum of all kinase LRs using the motif enrichment

method or the sum over all phosphosite likelihoods using the GPS

2.0 algorithm. We benchmarked these two approaches using the

known phosphoproteins of S. cerevisiae and we use the area under

the receiver operating characteristic (ROC) curve (AROC value)

as a measure of the method’s performance. We obtained an

AROC value of 0.69 for the motif enrichment method and 0.73

using GPS 2.0. For each protein complex, we used the prediction

method that would best predict the phosphoproteins experimen-

tally determined for S. cerevisiae, C. albicans, and Sc. pombe.

In parallel to this, we trained a naı̈ve Bayes predictor for kinase–

substrate interactions for S. cerevisiae. We used a set of features that

include the number of shared (physical and genetic) interaction

partners between a kinase and a putative substrate, the existence of

a phosphosite matching the substrate recognition motif of the

kinase, etc. (see Methods). We obtained an AROC value of 0.84

for this predictor using as a benchmark a set of curated kinase–

substrate interactions.

For each divergent complex identified above, we first calculated

the predicted phosphorylation propensity for the orthologous

group across 11 ascomycota species. In addition, we tried to

determine the most likely kinase(s) responsible for the observed

phosphorylation of each complex across the three species in a

three-step process: (1) we use the kinase–substrate predictor to

rank all 116 S. cerevisiae protein kinases according to the likelihood

that they phosphorylate the members of this complex in S.

cerevisiae; (2) we retain the top five kinases and for each we predict

the phosphoproteins observed in the three species (S. cerevisiae, C.

albicans, and Sc. pombe) using their substrate recognition motif and

the motif enrichment method; (3) we then assume that the kinase

that best predicts the phosphoproteins would be the most likely

regulator.

We present below the results obtained for the pre-replication

complex and for the clathrin-associated complex. The analysis of

the remaining complexes as well as individual kinase–substrate

predictions for S. cerevisiae can be found in Protocol S1 and Dataset

S2.

Pre-Replication and Clathrin-Associated Complexes
The evolution of cell-cycle control has previously been studied

by analyzing gene expression data for multiple species [35]. One

key finding from this study was that although there was little

overlap between the sets of genes that are periodically expressed in

different species, a similar physiological outcome is maintained.

That is, the timely assembly of the different cell-cycle complexes is

attained by regulated expression of one component, but the exact

protein that is periodically expressed may differ across species [35].

These same authors also found a significant association between

genes that are periodically expressed and under kinase regulation,

showing that there is significant co-evolution of gene regulation

and protein phosphorylation [35]. As noted above, our results

support their conclusions at the level of post-translational

regulation of the pre-replication complex. Although the pre-

replication complex as a whole shows similar levels of phosphor-

ylation across three yeast species, the specific phosphoproteins

detected appear to have diverged significantly.

The MCM and ORC complexes are a part of pre-replication

complex and are among the few examples were evolutionary

studies of phosphoregulation have been conducted [22]. Regula-

tion by phosphorylation of these complexes is also well studied,

making them a good starting point for the evaluation of our

methods. Among the top five kinases predicted to regulate these

complexes in S. cerevisiae (Rad53p, Cdc28p, Dun1p, Fus3p, and

Cla4p), Cdc28p, a well-known regulator of these complexes [36–

39], was predicted to best explain the phosphorylation pattern

observed (Figure 2B). For S. cerevisiae we correctly predicted

phosphorylation by Cdc28p of Mcm3p and Mcm4p [37,39].

Although it was not apparent from the calculated Cdc28

phosphorylation propensity, we do find conserved Cdc28 motifs

in Orc6p that would predict known regulation patterns [38].

Importantly, we correctly predict the divergent regulation of

Mcm3 by Cdc28. This interaction displays high phosphorylation

propensity in the Saccharomyces lineage that it is not observed in

more divergent species [22]. The phosphorylation event regulates

nuclear localization of the whole MCM complex in S. cerevisiae by

masking nuclear localization and export sequences that work in

coordination with localization signals in Mcm2 [22,39]. Interest-

ingly, we predict a strong N-terminal cluster of Cdc28p target sites

in C. albicans’ Mcm2, which overlaps with an experimentally

observed phosphorylation and shows strong homology to a

conserved nuclear localization sequence. Therefore we postulate

that in C. albicans, the localization of the MCM complex might be

regulated via phosphorylation of Mcm2p instead of Mcm3p as

occurs in the Saccharomyces lineage.

However, there are known regulatory events that we fail to

predict. We do not correctly predict the known Cdc28p regulation

of Orc2p [38], nor do we place Cdc7p among the top five most

likely kinase regulators of this complex, although it is known that it

phosphorylates Mcm4p [40] and Mcm2p [41]. We think further

experimental work in cross-species phosphoregulation of protein

complexes will create better benchmarks and further improve-

ments in these computational methods.

Having established that we could use our approach to predict

known kinase–substrate interactions and a known case of

evolutionary divergence of phosphoregulation, we used this

method to analyze complexes that show divergent levels of

phosphorylation across species (Figure 1C and Protocol S1). In

Figure 3A, we show the experimentally determined phosphopro-

teins and the predicted phosphorylation propensity of the clathrin-

associated AP-1/2/3 complexes. The top five kinases predicted to

be associated with the S. cerevisiae complexes were Cka1p, Yck1p,

Yck2p, Cka2p, and Cdc7. Contrary to the example above, the

observed phosphorylations could be explained equally well by the

binding specificity of the five kinases so we selected the top kinase

associated with the complex in S. cerevisiae, casein kinase type I

(both isoforms Yck1 and Yck2) as the most likely kinase

responsible for the observed phosphorylations (Figure 3B). The

resulting predictions are consistent with observations made in

other species. For example, we predict a conserved casein kinase I

regulation of the C terminus of APL6 and, in fact, this

Evolution of Phosphoregulation
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phosphorylation event has been observed in human cells [42]. Our

results also suggest that a kinase casein isoform regulates the miu2-

like subunit of AP-1 (APM2) with highly conserved target motifs at

amino acids 150 to 160. Again, it is known that phosphorylation of

the human miu2 isoforms of the AP2 complex at Thr156 can

regulate the complex [43]. Finally our analysis points to a casein

kinase I-dependent phosphorylation of the C terminus of APL2

that is not observed in the Saccharomyces lineage, but we predict it to

occur in the yeast species that diverged from budding yeast prior to

the whole-genome duplication event (Figure 3B).

These results show that the new phosphorylation information

provided here, coupled with our computational approach, can

confirm known cases of conserved and diverged kinase–substrate

interactions, and predict new ones. A detailed analysis of the

remaining complexes is provided in Protocol S1 and can provide a

starting point for future evolutionary studies of protein-complex

regulation by protein kinases.

Rapid Evolution of Kinase-Related Genetic Interactions
The results presented above show that the changes of

phosphorylation during evolution might contribute significantly

to evolutionary divergence, possibly at levels similar to transcrip-

tional regulation. One could postulate that, if a large fraction of

the phosphorylation sites played no significant functional role,

then the observed changes in phosphorylation could represent

mostly neutral variation with no impact on species fitness. In

contrast, if most changes in phosphorylation observed here have

an impact on fitness, then we would expect also to see significant

divergence of protein kinase function. In order to test for

functional changes, we decided to study the genetic interactions

of protein kinases in two different yeast species (S. cerevisiae and Sc.

pombe).

Two genes are said to genetically interact if concurrent

mutations in these genes produce phenotypes that are different

from the expected combined effect of the individual mutations

[44]. These epistatic or genetic interactions are used as way to

identify functional relationships between genes. We assume that

there is a correlation between the conservation of a gene’s function

in two different species with the conservation of its genetic

interactions.

We used quantitative genetic interaction screening to ask

whether protein kinases do indeed evolve new functions more

rapidly than average genes. We excluded from this analysis kinases

that phosphorylate cellular components other than proteins (e.g.,

lipid kinases). We assembled genetic interaction maps for S.

cerevisiae and Sc. pombe from the BioGRID database [45] and

quantitative genetic interactions obtained with the E-MAP

technology [46–50,51–53]. To expand the total number of genetic

interactions that we could compare across the two species, we

performed additional assays in Sc. pombe and S. cerevisiae using the

Figure 2. Evolution of phosphoregulation of the pre-replication complex. For S. cerevisiae, C. albicans, and Sc. pombe, proteins found to be
phosphorylated experimentally are marked with ‘‘P.’’ (A) For each protein in the species studied, phosphorylation propensity was predicted based on
sequence (see Methods) and represented in a color intensity gradient, where darker colors represent increasing predicted phosphorylation likelihood.
The AROC value for the prediction of the phosphorylation pattern the three species is 0.67 using the LR method. White squares denote lack of
predicted ortholog. (B) The top five kinases predicted to be associated with the ORC and MCM complexes in S. cerevisiae are shown along with the
respective AROC value and significance value for prediction of the phosphorylation pattern for the three species (C) Cdc28p phosphorylation
propensity was predicted from sequence and classified as poor (white), weak (light blue), or strong (dark blue). Gray denotes lack of predicted
ortholog.
doi:10.1371/journal.pbio.1000134.g002
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E-MAP method as previously described, adding an additional

2,000 genetic interactions to the dataset [49,50] (data provided in

Dataset S3). In total we compiled a set of 5,322 pairs of genes that

genetically interact in S. cerevisiae that were also tested in Sc. pombe

(see Figure 4). We observed that on average, 14% of the S. cerevisiae

genetic interactions (761 pairs) were conserved in Sc. pombe,

whereas only 8% (38 out of 472) of genetic interactions with

protein kinases and 4% (6 out of 141) of genetic interactions with

TFs are conserved. This shows that indeed the functional roles of

protein kinases and TFs are less conserved than average genes (p-

value = 561026 and 661025, respectively, with hypergeometric

distribution).

We have previously observed that positive genetic interactions

between genes coding for physically interacting proteins are much

more conserved than for average gene pairs [48]. However, we

found that genetic interactions among genes coding for physically

interacting kinase–protein pairs are significantly less conserved

than those for all physically interacting partners (p-value = 0.007

with hypergeometric distribution). This trend is stronger for

genetic interactions among transient physical interactions partners

(p-value = 261027 with hypergeometric distribution). Interactions

were defined as transient based on the experimental methods used

(see Methods). Finally we observed that genetic interactions

between kinase-protein interaction partners and between TF–

promoter interactions (from ChIP–chip experiments) show similar

levels of conservation (8%).

We conclude that kinase–substrate interactions change at a fast

evolutionary rate and that this leads to functional divergence that

is more rapid than for average genes. According to our results,

protein kinases diverge in function at a similar rate (when testing

direct physical targets) or somewhat slower (when testing all genes)

than TFs. Therefore we suggest that protein kinases, given their

high regulatory potential and rapid divergence in their interac-

tions, are an important source of phenotypic diversity.

Discussion

Comparing cellular interaction networks across different species

is crucial for understanding how DNA variability drives functional

potential. Changes in the regulation of gene expression have, to

date, been seen as a prime mechanism leading to phenotypic

divergence. This stems from the early studies of molecular

evolution and a large body of work on the study of the evolution

of morphology [54]. Recently, methods have been developed to

detect protein–protein interactions in high-throughput fashion

[12–16]. The resulting protein interaction networks have been

studied alongside an increasing number of solved protein complex

structures to shed new light into the evolutionary potential of

protein–protein interactions. It has been observed that protein

complexes are indeed well conserved across species, and changes

in complex formation occur typically by duplication or deletion of

complex components, rather than through rewiring of existing

proteins [32,55]. Still, on average, protein interactions were

observed to change at a fast rate after gene duplication [19,20].

This apparent discrepancy can be explained by noting that

transient interactions of lower specificity, like interactions

mediated by short peptide motifs, are much more likely to change

than stable interactions are [20,21]. We hypothesized that protein

kinases, given their crucial regulatory role and transient interac-

tions, could be an important source of phenotypic variability

across species. To study this, we have experimentally determined

phosphorylation sites by MS analysis for three yeast species (S.

cerevisiae, C. albicans, and Sc. pombe) spanning 400 to 600 million

years of evolution. We have used this information to estimate the

global rates of change of phosphoproteins. Based on these rates,

our estimated kinase–substrate interaction changes are within an

order of magnitude of previous estimates for gain or loss of

interaction after gene duplication. Furthermore, kinase–substrate

interaction evolution is at most two orders of magnitude slower

Figure 3. Evolution of phosphoregulation of the Clathrin associated protein complex. S. cerevisiae, C. albicans, and Sc. pombe proteins
found to be phosphorylated experimentally are marked with a ‘‘P.’’ (A) For each protein phosphorylation propensity was predicted based on
sequence (see Methods) and represented in a color intensity gradient where darker colors represent increasing predicted phosphorylation likelihood.
The AROC value for the prediction of the phosphorylation pattern in the three species is 0.76 using the GPS method. White squares denote lack of
predicted ortholog. (B) Casein kinase I type (Yck1p, Yck2p, Yck3p, and Hrr25p) phosphorylation propensity was predicted from sequence and
classified as poor (white), weak (light blue), or strong (dark blue). Casein kinase type I phosphorylation propensity predicts this phosphorylation
pattern with an AROC value of 0.63. Gray denotes lack of predicted ortholog.
doi:10.1371/journal.pbio.1000134.g003
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than TF–promoter interactions. These observations are further

supported by the comparative analysis of quantitative genetic

interactions between S. cerevisiae and Sc. pombe genes. We observed

a lower-than-average conservation of genetic interactions for

protein kinases and TFs, suggesting that the observed divergence

of phosphorylation correlates with functional changes of protein

kinases. Interestingly the level of conservation of genetic

interactions between kinases and their interaction partners is

similar to that observed for TFs and the genes they bind to.

However, it should be noted that the current overlap between

genetic interactions and physical interactions for kinases and TFs

is still small. Also, the different nature of physical interaction

(protein–DNA versus protein–protein) could potentially result in

differences in the genetic interactions observed between interact-

ing partners. For these reasons, further studies are needed to

determine the exact relative functional divergence rate.

Our results indicate that there is a high level of conservation of

phosphorylation for different functional groups across the broad

time scale studied. This would mean that even if individual kinase–

substrate interactions differ, the overall phosphorylation levels of a

given functional group might be strongly predicted by homology.

It is conceivable that this conservation of phosphorylation levels is

maintained by physical proximity of kinases and substrates due to

shared interaction partners or sub-cellular localization. Given that

the in vivo targets of a protein kinase are determined, in large part,

by factors other than its own substrate recognition (i.e., gene

expression, localization, scaffolding, etc.) [56], it is possible that

differential association to kinases serves to maintain the levels of

phosphorylation among different functional groups.

In this study, we have combined experimental phosphorylation

information with computational methods to predict kinase–

substrate interactions and their evolution. We used this approach

to study eight protein complexes that show significant changes in

phosphorylation and we predict putative kinase regulators

responsible for these observed changes. Analysis of well-studied

pre-replication complexes showed that we predict known examples

of conserved and divergent phosphoregulation. In addition to our

analysis, the study of human phosphorylation sites has recently

shown that highly conserved phosphorylation networks are

associated to disease (C.S.H. Tan and R. Linding, personal

communication).These results highlight the importance of study-

ing the evolution of kinase regulation and our work offers a

starting point for further studies.

Selection pressure acts on the preservation or acquisition of

phenotypes, rather than the mechanisms by which these

phenotypes are implemented. A picture is emerging of highly

conserved modules (i.e., complexes) that are regulated and

organized in different ways in different species. For instance, the

conservation of timed assembly of cell-cycle complexes, regulation

of mating, or co-expression of ribosome subunits may be

conserved, although details of the implementation diverges in

different species [23,35,48,57]. Similarly we show here that

kinase–substrate interactions have a large potential to change,

and that care should therefore be taken in projecting information

about these interactions using cross-species homology. Important-

ly, kinase–substrate interactions are just one type of essential

transient regulatory interaction [24], and recent work by Neduva

and colleagues point to the existence of other undiscovered

interactions mediated by small linear peptide motifs [58].

There has been a long-standing debate, in particular in the field

of developmental biology, as to the types of adaptive mutations

that contribute most to phenotypic changes [54,59]. This debate

has tended to focus on studies of the evolutionary history of

individual biological systems. In contrast, we have used large-scale

phosphorylation and genetic data to place quantitative bounds on

the relative rate of change of TF–gene and kinase–substrate

interactions. We believe that our approach, that of combining

physical and genetic interaction mapping on a large scale across

multiple species, will allow us to systematically probe the

evolutionary potential of different cellular components.

Methods

S. cerevisiae, Sc. pombe, and C. albicans Sample
Preparation

Proteins were precipitated from yeast lysates using TCA on ice

and washed once with acetone at 4uC. Protein pellets (approxi-

mately 24 mg protein) were resuspended in 3 ml of freshly

deionized 8 M urea. Samples were incubated for 1 h at 57uC with

2 mM Tris(2-carboxyethyl)phosphine hydrochloride to reduce

cysteine side chains, these side chains were then alkylated with

4.2 mM iodoacetamide in the dark for 45 min at 21uC. The

mixture was diluted 8-fold with 25 mM ammonium bicarbonate

and 1% (w/w) modified trypsin (Promega) was added. The pH was

adjusted to 8.0 and the mixture was digested for 12 h at 37uC. The

digests were desalted using a C18 Sep Pak cartridge (Waters) and

lyophilized to dryness using a SpeedVac concentrator (Thermo

Electron).

Figure 4. Functional divergence of protein kinases and
transcription factors. Genetic interactions were compiled for
orthologous gene pairs in S. cerevisiae and Sc. pombe. We compared
the level of conservation of genetic interactions involving protein
kinases and transcription factors to the average conservation of S.
cerevisiae genetic interactions. The conservation of genetic interactions
that overlap with protein–protein interactions were compared with
physical interactions involving at least one protein kinase and with
transient interactions. Physical interactions were defined as transient if
they were experimentally determined by methods capable of capturing
transient interactions (see Methods). The number of conserved
interactions for each category is as follows: average gene pairs: 761
out of 5,322; kinases versus random genes: 38 out of 472; TFs versus
random genes: 6 out of 141; physical interactions: 67 out of 233;
transient interactions: 8 out of 85; kinase interactions: 2 out of 25; TF–
gene interactions: 4 out of 48.
doi:10.1371/journal.pbio.1000134.g004
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Enrichment of Phosphorylated Peptides Using Titanium
Dioxide

Phosphorylated peptides were enriched using an ÄKTA

Purifier. Peptides run over an analytical guard column (Upchurch

Scientific) loaded with 5-mm titanium dioxide beads (GL Sciences).

Peptides were re-suspended in 750-ml wash solution (35%

acetonitrile, 200 mM NaCl, 0.3% TFA), and the enrichment

was done on three separate 250-ml aliquots. Each aliquot was

injected over the titanium dioxide column, with an additional

3.9 ml wash solution to remove non-phosphorylated peptides.

This was then followed by 3.5 ml of rinse solution (5% acetonitrile,

0.1% TFA). Phosphorylated peptides were eluted from the

titanium dioxide column using 1 ml of elution solution (1 M

KH2PO4).

pH 9.5 Reverse-Phase Chromatography
High-pH reverse-phase chromatography was performed using

an ÄKTA Purifier (GE Healthcare) equipped with a 250-64.60-

mm column packed with 3-mm Gemini C18 resin (Phenomenex).

Phosphopeptide-enriched fractions were loaded onto the column

in 2 mM ammonium trifluoroacetic acid, pH 9.5 (buffer A). Buffer

B consisted of 2 mM ammonium trifluoroacetic acid in acetoni-

trile. The gradient went from 1% B to 60% B over 20 ml, and

from 60% B to 100% B over 5 ml. Between 30 and 40 fractions

were collected and dried down using a SpeedVac concentrator.

Samples were desalted using C18 ziptips (Millipore).

Nano-LC-ESI-Qq-TOF Tandem MS Analysis
Individual fractions were separated using a 75-mm615-cm

reverse-phase C18 column (LC Packings) at a flow rate of 350 nl/

min, running a 3–32% acetonitrile gradient in 0.1% formic acid

over 1 h on an Agilent 1100 series HPLC equipped with an

autosampler (Agilent Technologies). The LC eluent was coupled

to a micro-ionspray source attached to a QSTAR Elite mass

spectrometer (Applied Biosystems). Peptides were analyzed in

positive ion mode. MS spectra were acquired for 1 s. For each MS

spectrum, the two most intense multiple charged peaks were

selected for generation of subsequent collision-induced dissociation

MS. For precursor ion selection, the quadrapole resolution was set

to ‘‘low,’’ which allows for transmission of ions within approxi-

mately 2 mass to charge (m/z) units of the monoisotopic mass. The

collision-induced dissociation energy was automatically adjusted

based upon peptide charge and m/z ratio. A dynamic exclusion

window was applied which prevented the same m/z from being

selected for three minutes after its initial acquisition.

Interpretation of MS/MS Spectra
Data were analyzed using Analyst QS software (version 1.1) and

MS/MS centroid peak lists were generated using the Mascot.dll

script (version 1.6b18). The MS/MS spectra were searched against

the entire Uniprot database of the respective species (downloaded

19 April 2007) using the following parameters. Initial peptide

tolerances in MS and MS/MS modes were 200 ppm and 0.2 Da,

respectively. Trypsin was designated as the enzyme and up to two

missed cleavages were allowed. Carbamidomethylation was

searched as a fixed modification. Oxidation of methionine, protein

N-terminal acetylation, pyro-glutamine formation, and phosphor-

ylation of serine/threonine/tyrosine residues were allowed as

variable modifications. All high-scoring peptide matches (expec-

tation value ,0.01) from individual LC-MS/MS runs were then

used to internally recalibrate MS parent ion m/z values within

that run. Recalibrated data files were then searched with a peptide

tolerance in MS mode of 50 ppm. The false-positive rates were

estimated by conducting the search using a concatenated database

containing the original Uniprot database as well as a version of

each original entry where the sequence has been randomized.

Functional Groups, Complexes, and Orthology
Definitions

Functional groups for S. cerevisiae were defined using the gene

ontology mapping provided by SGD (http://www.yeastgenome.

org/). The complexes definitions for S. cerevisiae were obtained

from the MIPS database (http://mips.gsf.de/). For the other

fungal species studied, complexes and functional groups were

defined by transferring these annotations using the orthology

definitions from the Synergy algorithm [1]. For the remainder of

this methods section we will use ‘‘functional group’’ to describe

both the gene ontology groups and complexes for brevity.

Global Rates of Change
In order to calculate the global rate of change of phosphopro-

teins in S. cerevisiae with respect to another species, we considered

only the set of orthologous proteins between species i and S.

cerevisiae (denomined as ortProteins and ortKinases). We assumed

that the coverage (c) of our compiled set of S. cerevisiae

phosphoproteins is 92%, the largest value obtained from leaving

out one of the previously published sets. We define the number of

expected phosphoproteins (‘‘expPhospho’’) the number of ortho-

logous phosphoproteins in species i and the conserved phospho-

proteins (‘‘consPhospho’’) the number of ortologous phosphopro-

teins in species i detected as phosphorylated in S. cerevisiae. The

number of divergent phosphoproteins (‘‘divPhospho’’) was thus

defined as the difference: (expPhospho6c)2consPhospho. We

defined the rate of change of S. cerevisiae phosphoproteins in

reference to species i as:

divPhospho

ortProteins|divergenceTime

where divergenceTime is the time since the last common ancestor

between S. cerevisiae and species i. Similarly, we defined the rate of

change of kinase–substrate interactions as:

N|divPhospho

ortProteins|ortKinases|divergenceTime

where N is the assumed number of kinase–substrate interactions

changed with every change in total phosphoproteins. We

calculated similar rates for the change of TF–gene interactions

using available information from the literature [17,18,31].

Detailed values for all species studied are available in Protocol S1.

Normalized Values for Average Phosphosite/
Phosphoprotein per Protein

For each species and for each functional group defined above,

we determined the average number of phosphosites per protein.

For this analysis, we used the phosphosites determined in this study

and additional studies for S. cerevisiae and Sc. pombe growing in

exponential phase [10,29] (excluding condition-specific studies).

For each species, we then normalized the results of each functional

group by the average number of phosphosites per protein for the

whole proteome. We define this normalized value as the

phosphorylation level and used this measure for all the functional

analysis presented in this manuscript. In similar fashion, we also

calculated the fraction of phosphoproteins per functional group
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normalized by the fraction of phosphoproteins per proteome in

each species.

Functional Groups with Significant Changes in
Phosphorylation Levels across Species

To search for significant cross-species differences in the average

number of phosphosites per protein, we defined for each

functional group and each species a measure of comparative

phosphorylation (compPhos) as the relative contribution to the

sum across the three species. For species i:

compPhosi~
norPhosiPn
j norPhosj

where norPhos is the normalized average fraction of phosphosites

per protein for that functional group in species i, as defined above,

and n the set of three yeast species studied here.

Defined in this way, functional groups with the same average

fraction of phosphosites per protein, in the three species, would

have a comparative phosphorylation value matching exactly 1/3

in the three species. As expected from the high-cross species

correlation shown in Figure 1, most of the functional groups show

very similar levels of phosphorylation across species with an

average comparative phosphorylation value near 0.33 for the three

species. We then defined as a significant change comparative

phosphorylation values that significantly deviate from 0.33. For

this purpose, we calculated z-scores and selected functional groups

that had, for at least one species, z-score greater than 1.6 or

smaller than 21.6 corresponding to significant changes in

phosphorylation levels (p-value ,0.05). z-scores for each functional

group are provided in Protocol S1.

In order to find complexes with significant differences in

average number of phosphosites, we considered only 28 complexes

that had at least ten protein subunits to discard large variations

due to small complex sizes.

Sequence-Based Prediction of Protein Phosphorylation
We used two different approaches to predict phosphorylation

from sequence for all fungal proteins studied: (1) LRs for kinase

motif enrichment and spatial clustering; (2) phospho-site propen-

sity predictions from GPS 2.0 [34].

The LRs for kinase motif enrichment and spatial clustering were

determined following the method of Moses and Colleagues [33].

We used kinase substrate motifs for 116 protein kinases predicted

by Predikin [60], including for each kinase, motifs that vary from

the originally published by addition of one or two fully degenerate

positions. For each sequence, the final prediction score was defined

as the sum of the LRs of all kinases. For the second approach, we

used GPS 2.0 to predict phosphorylation sites within all the fungal

sequences studied. The final protein phosphorylation prediction

score was defined as the sum over all the phosphorylation sites

likelihood scores for any given protein. The two prediction scores

were obtained for all protein sequences in the genomes of S.

cerevisiae, S. bayanus, S. paradoxus, S. castellii, Kluyveromyces lactis, K.

waltii, Debaryomyces hansenii, C. albicans, Yarrowia lipolytica and Sc.

pombe. The prediction scores were benchmarked using the known

phosphoproteins of S. cerevisiae. We plotted the ROC curve and

determined the area under the ROC (AROC) curve for both

methods (see Protocol S1). The LR method predicts phosphopro-

teins with an AROC of 0.69 while the GPS 2.0 method predicts

phosphoproteins with an AROC of 0.73. For each complex, we

selected the method that could best predict the phosphoproteins

determined for S. cerevisiae, C. albicans, and Sc. pombe for that

complex. The exact AROC values for each complex are available

in Protocol S1.

Kinase–Substrate Interaction Prediction for S. cerevisiae
Proteins

In order to predict kinase–substrate interactions for S. cerevisiae

proteins, we used a naı̈ve Bayes predictor integrating sequence

based prediction of kinase interactions with available protein and

genetic interaction data defined in the BioGRID database [45]

version number 2.0.43. Four features were used in the predictor:

(1) substrate motifs enrichment LRs in putative target as

determined above; (2) presence or absence of at least one

phosphosite matching the kinase motif; (3) number of orthologs

(from 0 to 2) in C. albicans and/or Sc. pombe with at least one

phosphosite matching the kinase motif; and (4) the number of

shared physical or genetic interactions partners in common

between the kinase and the putative target. These four indicators

were integrated using a naı̈ve Bayes algorithm, and its perfor-

mance was evaluated by AROC using a set of 472 kinase–

substrate interactions curated from the literature [46] as our set of

positive interactions. The positive set was used both as training

and testing sets using a 5-fold cross-validation. The sequence-

based predictions has AROC value of 0.63 that improves

significantly with the integration of physical and genetic

interaction data to an AROC value of 0.84 (see Protocol S1 for

ROC curves).

Prediction of Kinase-Complex Regulation
To predict the kinases most likely responsible for the

phosphoregulation of a protein complex, we defined the kinase-

complex association score as the sum of the S. cerevisiae kinase–

substrate prediction score across all the complex subunits. For

each complex, we selected (from the 116 S. cerevisiae protein

kinases) the top five kinases predicted to regulate the complex for

further analysis. These five kinases were then ranked on how well

their substrate specificity explains the phosphorylation pattern of

the complex subunits across the three species with available

phosphorylation data. The ranking was done on the AROC value

for phosphorylation prediction using the kinase–substrate LRs

predicted from their binding motifs as described above. Detailed

results for the complexes studied are provided in Protocol S1.

Evolution of Kinase-Related Genetic Interactions
Genetic interaction information for S. cerevisiae and Sc. pombe

were compiled from different quantitative high-throughput studies

[45–48] and from the BioGRID interaction database. Genetic

interactions from E-MAP studies were defined as any interactions

with a positive S-score greater than 2 or a negative score lower

than 22.5. For the genetic interactions obtained from the BioGrid

database that do not contain a quantitative score we assumed that

those labeled as ‘‘Synthetic Rescue’’ or ‘‘Phenotypic Suppression’’

were positive interactions, while those labeled with ‘‘Synthetic

Lethality’’, ‘‘Phenotypic Enhancement’’, ‘‘Synthetic Haploinsuffi-

ciency’’, or ‘‘Synthetic Growth Defect’’ were negative interactions.

To increase the overlap available for cross-species analysis, we

determined 634 novel strong genetic interactions in S. cerevisiae and

tested an additional 1,293 gene pairs in Sc. pombe using the E-MAP

method as previously described [50]. The final set contains 5,322

pairs of genes that genetically interact in S. cerevisiae that were also

tested in Sc. pombe. This set is provided in Dataset S3. A genetic

interaction was considered to be conserved when the correspond-

ing orthologs in Sc. pombe also genetically interact according to the

definition defined above (S-score .2 or S-score ,22.5) having a
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similar phenotypic effect (suppression or enhancement) in both

species.

Physical protein–protein interactions were obtained from

BioGRID database [45] version number 2.0.43. In order to

define a subset of physical interactions enriched for transient

interactions we excluded those that were labeled in BioGRID as

‘‘Affinity Capture,’’ ‘‘Reconstituted Complex,’’ or ‘‘Co-crystal

Structure.’’ We considered for our analysis 114 sequence specific

transcription factors annotated in SGD database (http://www.

yeastgenome.org). TF–promoter interactions were obtained from

Harbison and colleagues [61].

Supporting Information

Dataset S1 Experimentally determined phosphoryla-
tion sites for S. cerevisiae, C. albicans, and Sc. pombe.
Found at: doi:10.1371/journal.pbio.1000134.s001 (2.63 MB XLS)

Dataset S2 Probability scores for kinase-target naı̈ve
Bayes predictions for S. cerevisiae trained on available
phosphorylation information as well as known physical
and genetic interactions data.

Found at: doi:10.1371/journal.pbio.1000134.s002 (3.43 MB

TAR)

Dataset S3 Genetic interaction for S. cerevisiae and Sc.
pombe determined in this study and references for
additional interactions collected from other sources.
Found at: doi:10.1371/journal.pbio.1000134.s003 (1.16 MB XLS)

Protocol S1 Supporting methods and results.
Found at: doi:10.1371/journal.pbio.1000134.s004 (0.63 MB PDF)
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