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Living cells rival computers in their ability to process external

information and make complex behavioral decisions. Many of

these decisions are made by networks of interacting signaling

proteins. Ongoing structural, biochemical and cell-based

studies have begun to reveal several common principles

by which protein components are used to specifically transmit

and process information. Recent engineering studies

demonstrate that these relatively simple principles can be used

to rewire signaling behavior in a process that mimics the

evolution of new phenotypic responses.
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Introduction
Eukaryotic cells use complex networks of signal trans-

duction proteins to make decisions about whether to

grow, differentiate, move or die. These cellular networks

have information-processing capabilities that rival com-

puters: they can perform complex signal integration,

switch states in a manner that retains memory or generate

complex temporal behaviors, such as oscillations [1–3].

Just as electronic circuits are built of simpler components,
inion in Structural Biology 2004, 14:690–699
cellular signaling circuits are composed from a modular

toolkit of components, including kinases, phosphatases,

GTPases (guanine nucleotide triphosphatases) and inter-

action domains. However, unlike electronic components,

which can be linked simply through physical wiring,

protein signaling components operate in the complex

environment of the cell.

Over the past decade, two major principles have emerged

with respect to how signaling networks and their infor-

mation flow are organized. First, many individual signal-

ing proteins act as gated nodes: their output function

(catalysis or binding) is tightly regulated in response to

specific input stimuli. In turn, the resulting output activ-

ity serves as a stimulus for further downstream proteins.

Second, signaling proteins that function in the same

pathway often co-assemble into physical complexes. Such

co-localization, either through direct interaction or

mediated by organizing factors known as scaffolds, is

thought to promote specificity [4,5].

Modular protein interaction domains play a central role in

mediating both signaling protein regulation (gating) and

signaling complex assembly. This review will focus on

two fundamental issues concerning protein circuits. First,

we will review how gating and complex assembly allow

the myriad signaling proteins in a cell to form complex

and robust circuits. Second, we will discuss how these

mechanisms lend themselves to the evolution of new

responses, a view supported by exciting new experiments

demonstrating that these principles can be used to rewire

cell signaling and behavior.

Gating by signaling proteins: conventional
versus modular allostery
Gating elements are the fundamental components of any

information-processing system. In electronic circuits,

transistors and related devices are gates in which an

output — current flow — is regulated in response to an

input — applied voltage. However, in cells, there is no

single currency of output (e.g. electron flow in electro-

nics): cellular information currencies include covalent

modification (e.g. by kinases/phosphatases), ligand bind-

ing and changes in localization. Thus, protein gates must

be able to detect this diverse array of inputs and use this

information to regulate an equally diverse array of output

functions.

It has long been appreciated that the fundamental gating

units of cells are allosteric molecules [6]. Many signaling

proteins display allosteric behavior: they can exist in two
www.sciencedirect.com



Protein circuitry Dueber et al. 691
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OFF ON

T state R state

Conformational

Steric

OFF ON

(a)  Conventional allostery (b)  Modular allostery

Current Opinion in Structural Biology

Comparison of conventional and modular allosteric protein gates. (a) Conventional allostery. A single folding unit contains both a catalytic

site and secondary regulatory site(s), and can adopt an active or inactive conformation. Binding of an input ligand to the regulatory site

preferentially stabilizes the active conformation. The input/output information is propagated by conformational coupling between the sites.

(b) Modular allostery. The catalytic (output) domain is a physically separable folding unit from the regulatory domains. When isolated, these

output domains display constitutive activity, but are often autoinhibited by the regulatory domains. Most proteins that are regulated by modular

allostery fall into one of two general categories of autoinhibition: steric and conformational. Steric autoinhibition occurs when the output active

site is directly blocked. Conformational autoinhibition occurs when autoinhibitory interactions perturb the conformation of the output domain,

reducing its activity. Certain gates can display elements of both steric and conformational autoinhibition. In all of these modular gates, activation

occurs through disruption of the autoinhibitory interactions by binding of competing exogenous ligands or by covalent modifications.
or more conformations (active and inactive) that are

differentially stabilized by inputs such as ligand binding

or covalent modification. However, in recent years, it has

become clear that there are at least two general ways to

achieve allostery — what we will define as ‘conventional

allostery’ and ‘modular allostery’ (Figure 1).

In conventional allosteric proteins, an output activity and

input-binding sites are contained within a single coopera-

tively folding structural unit [7] (Figure 1a). The protein

can adopt at least two conformations; binding of an

activating input stabilizes the active conformation. The

functional coupling between the active site and the input-

binding site is mediated by the dynamic linkage of the

amino acids that make up the fold. An example of a

conventional allosteric protein found repeatedly in sig-

naling systems is the Ras family of small GTPases [8].

These conserved folds have an effector-binding site (out-

put) that is properly configured only when the protein is

bound to the input ligand GTP. Certain classes of kinases

also display conventional allosteric activation, adopting a

fully active catalytic conformation only in response to

conserved phosphorylation and binding inputs [9–11].

By contrast, signaling proteins that utilize modular allo-

stery to achieve gating have structurally separable output

and regulatory domains (reviewed previously in [12,13])
www.sciencedirect.com
(Figure 1b). Such proteins usually contain an output

domain that, when isolated, displays constitutive (unre-

gulated) activity. However, other regions of the intact

protein autoinhibit this output activity through one of two

general mechanisms: sterically blocking access to the

output active site [12,14,15] or conformationally distort-

ing the output domain [12]. These modular gates can then

be activated by inputs that relieve repression by disrupt-

ing the autoinhibitory interaction (e.g. a competitive

ligand).

Modularity and evolvability
Although modular allostery may seem like an inelegant

and inefficient way to build a molecular gate, many

examples of this type of signaling protein are emerging,

suggesting that this may be the prevalent solution chosen

by evolution when faced with the challenge of generating

diverse new regulatory linkages. It may be easier to

rapidly evolve radically new input/output relationships

using a type of modular framework via relatively simple

recombination events. Moreover, because multiple reg-

ulatory domains can cooperate to autoinhibit a single

output domain, this framework may more readily yield

gates capable of integrating multiple inputs.

The notion that modular gates are more evolutionarily

flexible is generally supported by the higher level of
Current Opinion in Structural Biology 2004, 14:690–699
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Table 1

Examples of signaling proteins gated by autoinhibition.

Protein Input(s) Output Mechanism of autoinhibition References

Steric

EGFR EGF Receptor

dimerization

Cysteine-rich domain occludes

receptor dimerization surface

(another cysteine-rich domain)

[25��,27��]

SH2-containing

phosphatase 2

(SHP2)

SH2-binding

motifs (p-Tyr)

Phosphatase N-terminal SH2 domain sterically

blocks phosphatase catalytic site

[45]

p21-activated

kinase (PAK1)

Rac or Cdc42 Ser/Thr kinase GBD blocks catalytic site, preventing

autophosphorylation

[46]

Twitchin Ca2/S100 complex Ser/Thr kinase Pseudo-substrate motif occupies

kinase active site; locked into position

by adjacent IgG domain

[47]

p47phox Phosphorylation by

PKC

NADPH oxidase Intramolecular peptide blocks tandem SH3

domains from interacting with membrane-

associated partner, thereby blocking formation

of functional oxidase complex

[48]

Vav Phosphorylation by

Src family kinases

Rho, Rac, Cdc42

GEF (DH–PH module)

N-terminal extension blocks GTPase

interaction site

[49]

Conformational

Src kinases SH2- and SH3-

binding motifs

Tyr kinase Binding of the SH2 and SH3 domains to

intramolecular ligands locks kinase in

inactive conformation

[10]

c-Abl SH2- and SH3-

binding motifs;

possibly membrane

targeting of myristoyl

group

Tyr kinase Binding of N-terminal myristoyl group

and SH2 and SH3 domains to sites on

or adjacent to kinase domain locks kinase

in inactive conformation remarkably similar

to the autoinhibited structure of Src

[17��,18��]

N-WASP Cdc42 and PIP2 Arp2/3 stimulation

(actin polymerization)

GBD and a polybasic motif (B) form

cooperative intracomplex interactions that

conformationally inactivate the N-WASP

output domain, blocking its ability to

activate the Arp2/3 actin-nucleating complex

[19,20]

Unknown (evidence of autoinhibition given)

Polo-like kinase

(PLK)

Phosphorylated

Cdc25

Ser/Thr kinase Polo-box domain reduces activity of kinase

domain. This repressive interaction can

be dissociated by phosphorylation of

the kinase domain at Tyr210

[50]

Dbl PIP2 and PIP3 Rho, Cdc42 GEF

(DH–PH module)

N-terminal region binds PH domain and is

required for autoinhibition of exchange

activity of adjacent DH domain

[51]

Intersectin Proline-rich region

from N-WASP

Cdc42 GEF

(DH–PH module)

SH3 domains inhibit the catalytic

DH domain. Binding proline-rich

region of N-WASP to SH3 domains

stimulates DH exchange activity

[52,53]

Cdc24 Rsr1p/Bud1p and

Bem1p binding

Cdc42 GEF

(DH–PH module)

Phox-Bem1 homology (PB1) domain involved

in autoinhibition. Rsr1p/Bud1p binds calponin

homology (CH) domain, which is thought to

cause a conformational change that

dissociates the PB1 autoinhibitory interaction.

Bem1 binds the PB1 domain and is thought

to trap this active state

[54]

Chimaerin Phosphatidylserine

and phosphatidic

acid

Rac GAP C1 domain required for regulation [55]

Current Opinion in Structural Biology 2004, 14:690–699 www.sciencedirect.com
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Table 1 Continued

Protein Input(s) Output Mechanism of autoinhibition References

P-Rex1 PIP3 and Gbg Rac GEF

(DH–PH module)

Coincidence detector for PIP3 and Gbg,

but mechanism of autoinhibition is unknown

[56]

Rho-associated

kinase (ROCK)

Rho and arachidonic

acid

Ser/Thr kinase Overexpression of a fragment containing the

Rho-binding domain (RB) and PH domain

inhibits activity of the kinase. Point mutations

disrupting binding of RB to Rho have similar

effects. RhoA binding to RB is thought to

activate kinase

[57]

DH, Dbl homology; PH, pleckstrin homology; PIP3, phosphoinositol 3,4,5 trisphosphate; PKC, protein kinase C.
evolutionary diversification observed for these proteins.

For example, the Rho family GTPases, which play an

important role in regulating cell growth and motility, are

conventional allosteric proteins [8]. Although there are 24

total isotypes, they can be classified into only three

general classes (Rho, Rac and Cdc42). By contrast, there

are over 80 Rho GTPase-activating proteins (GAPs) and

over 70 Rho guanine nucleotide exchange factors (GEFs),

the upstream molecules that negatively and positively

regulate these GTPases, respectively [16]. Most of these

GEFs and GAPs appear to be regulated through modular

mechanisms — each has a conserved catalytic domain

within the context of a larger multidomain protein. The

diversity of modular architecture found in GEFs and

GAPs suggests that evolution of Rho signaling has

occurred primarily through modification of GEFs and

GAPs, rather than through modification of the GTPases

themselves.

New examples of modular allosteric signaling
proteins
In recent years, the number of signaling proteins that

appear to be regulated by modular allosteric mechanisms

has exploded. An extensive but not exhaustive list is

given in Table 1. The mechanisms of several examples

are shown in Figure 2.

It has become clear that signaling proteins that utilize

modular autoinhibition can display remarkably complex

gating behaviors. For example, the Abl kinase appears to

be capable of integrating information from three distinct

inputs (Figure 2a). Like the related Src kinase, Abl

contains a Src homology (SH) 2 domain and an SH3

domain, which participate in autoinhibitory interactions.

However, Abl contains a third interaction required for

autoinhibition: an N-terminal myristoyl group binds in a

pocket in the kinase [17��]. Myristoyl binding appears to

contribute to the nearby SH2-docking site [18��]. These

findings are consistent with a model in which Abl acts as a

three-input gate: it can be activated by exogenous SH2 or

SH3 ligands, as well as by insertion of the myristoyl group

into the membrane (alternatively, there may exist an

unknown hydrophobic ligand that displaces the myristoyl
www.sciencedirect.com Current Opinion in Structural Biology 2004, 14:690–6
group from its binding pocket). These three inputs would

probably function cooperatively, activating the kinase

with high specificity.

The Wiskott–Aldrich syndrome protein (WASP) family of

actin-regulatory proteins also appears to be able to coor-

dinate at least three distinct inputs (Figure 2b). Previous

work has shown that cooperative autoinhibitory interac-

tions allow neuronal WASP (N-WASP) to respond syner-

gistically to a specific combination of inputs: the GTPase

Cdc42 and the phosphoinositide PIP2 (phosphoinositol

4,5 bisphosphate) [19,20]. More recent work has revealed

that phosphorylation is a third input and can function

intimately with Cdc42 activation [21�,22,23]. The Cdc42-

binding module that participates in autoinhibition is

referred to as the GTPase-binding domain (GBD). A

residue in the GBD (Tyr256) can be specifically phos-

phorylated in a manner that disrupts its autoinhibitory

interaction without perturbing its binding to Cdc42.

Thus, both Cdc42 and phosphorylation can function

cooperatively to disrupt the same autoinhibitory interac-

tion. This dual activation may provide a type of memory:

binding of Cdc42 may transiently disrupt the GBD auto-

inhibitory interaction, thereby facilitating phosphoryla-

tion, which may provide a more long-lived state of

activation [21�].

Whereas most examples of autoinhibition involve intra-

cellular signaling proteins, one striking new example is an

extracellular signaling protein, the epidermal growth fac-

tor receptor (EGFR) (Figure 2c). It had long been thought

that, like many other transmembrane hormone receptors,

EGFR would be activated by ligand-mediated dimeriza-

tion [24]. However, a flurry of structural and mechanistic

studies revealed that EGFR dimerization is not mediated

by typical bridging interactions provided by the ligand

[25��]. Instead, the extracellular region has a dimerization

domain that is blocked in the unliganded state. Upon

ligand binding, autoinhibition is released and the dimer-

ization domain is exposed, allowing receptor monomer

association and subsequent activation [26��,27��]. Mod-

ular autoinhibition appears to be a general solution for

gating utilized by diverse types of signaling machinery.
99
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Figure 2
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New examples of modular allosteric signaling proteins. (a) c-Abl is a modular allosteric switch that may respond to three or more inputs.

The kinase domain is conformationally autoinhibited by three coordinated intramolecular interactions: an SH3–peptide interaction, docking

of the SH2 domain on the kinase domain and docking of an N-terminal myristoyl group in a hydrophobic pocket on the kinase domain [18��]. The

kinase can be activated by ligands that compete with these autoinhibitory interactions, including exogenous SH3 and SH2 ligands, as well as by

interactions that might displace the buried myristoyl group (e.g. membrane targeting). Relief of autoinhibition by a combination of these

mechanisms allows autophosphorylation and full activation of the kinase. (b) WASP family proteins can interact with and activate the Arp2/3

(actin-related protein 2/3) actin-nucleating complex. The output domain, constitutively active in isolation, is autoinhibited by several interactions,

including an intramolecular interaction with the GBD. This autoinhibitory interaction can be relieved by binding of the GTPase Cdc42. In addition,

recent studies have shown that Src family kinases can phosphorylate Tyr256 on the GBD, destabilizing its ability to participate in the

autoinhibitory interaction [21�]. Phosphorylation is only observed when the protein has been activated by Cdc42. Thus, it has been proposed that

phosphorylation may provide ‘memory’ by locking the protein in a longer-lived activated state, even after removal of active Cdc42 as a

stimulus. (c) EGFR is activated by ligand-mediated dimerization. However, unlike similar receptors, dimerization does not involve any

ligand-mediated bridging interactions. Instead, the receptor has a dimerization domain, which, in the inactive state, is occluded by

autoinhibitory interactions. EGF ligand relieves this autoinhibition, indirectly promoting dimerization [27��].
Engineering synthetic protein gates:
exploiting modularity
The growing number of signaling proteins observed to

use modular autoinhibition is consistent with a model in

which such mechanisms allow a high degree of evolu-

tionary plasticity. A recent study has attempted to address

this hypothesis by mimicking evolution, testing whether
Current Opinion in Structural Biology 2004, 14:690–699
domain recombination can be used to reprogram the input

control of a modular protein switch [28��] (Figure 3).

Specifically, the constitutively active output domain of

the actin-regulatory protein N-WASP was fused to com-

binations of exogenous modular domains (SH3 and PDZ

[PSD95, Dlg and ZO-1] domains) and their cognate

ligand peptides, in an attempt to generate synthetic
www.sciencedirect.com
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Figure 3
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NAND-NOT

Single input

AND

OR

N-WASP

Reprogramming the input control of N-WASP, a modular allosteric switch controlling actin polymerization. (a) The output domain of N-WASP

can activate actin polymerization via the Arp2/3 complex. Under basal conditions, this domain is conformationally repressed by autoinhibitory

interactions involving the GBD and basic (B) domain. These interactions are cooperatively relieved by the binding of Cdc42 and PIP2 to these

respective domains. Thus, N-WASP behaves akin to a logical AND gate: the individual inputs are poor activators, but together are highly potent

(activity is indicated in truth-table format using color-coded scale) [20]. (b) Dueber et al. [28��] attempted to reprogram the N-WASP output domain by

imposing synthetic autoinhibitory interactions using SH3 and PDZ domains. A library of potential gates was constructed using different domain

architectures, and intramolecular SH3 and PDZ domain ligands of varying affinity. The right panel shows examples of diverse gating behaviors

generated from this library.
proteins that activated actin polymerization in response to

non-native inputs (competing peptide ligands of the

domains).

Several important conclusions emerged from this study.

First, two-thirds of the resulting synthetic proteins dis-

played gating behavior (i.e. output activity altered by

addition of input ligands), indicating that, from an evolu-
www.sciencedirect.com
tionary perspective, it may indeed be relatively easy to

generate new input/output relationships through domain

recombination. Second, many of these synthetic gates

displayed sophisticated multi-input control, including

AND, OR and other complex gating. Not only is this

finding consistent with the notion that modular gates are

evolutionarily flexible, but also it suggests that they

represent a highly engineerable platform. Several other
Current Opinion in Structural Biology 2004, 14:690–699
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related approaches have been used to engineer protein-

based switches with synthetic input/output relationships

[29�,30�]. Thus, in the future, it may be possible to

engineer a wide variety of protein gates and to link them

together into synthetic protein circuits.

Wiring through co-localization: the role of
interaction domains, adaptors and scaffolds
Another emerging principle is that co-localization can be

a major factor in directing signaling information flow.

Consider the seemingly simple problem of how a kinase

decides what substrates to phosphorylate. The active site

of the kinase may have an intrinsic substrate preference
Figure 4
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showed that a chimeric diverter scaffold could be generated that recruited
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recruitment of adaptor proteins, which, in turn, recruit specific downstream

allowing recruitment of the SH2–SH3 adaptor Grb2. Grb2 in turn recruits th

Activation of the Fas receptor leads to the recruitment of the adaptor Fadd,

of these caspases leads to apoptosis. Howard et al. [38��] showed that a sy

response of EGFR stimulation into an apoptotic response.
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[31]. However, in many cases, other interactions play a

major role in recruiting proper substrates. These include

docking sites on the kinase domain itself (but distinct

from the substrate-binding groove) [9,32] and external

modular recruitment domains [4,5,33]. Finally, a growing

number of scaffold or adaptor proteins have been shown

to contain multiple interaction domains, thereby appear-

ing to guide specificity by tethering the kinase to its

substrate. Examples of such scaffold proteins have been

reviewed elsewhere [34,35].

One possible advantage of scaffold proteins as wiring

devices is their modularity. In principle, scaffolds allow
add
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vivo. (a) The yeast mating response and high osmolarity response

ways share a common MAPKKK, Ste11, the scaffold proteins,

lexes, thereby preventing improper cross-talk. Park et al. [36��]

a novel combination of kinases and yielded a functional pathway

(b) EGFR and Fas receptor activation is mediated by the conditional

effectors. Activation of EGFR leads to receptor autophosphorylation,

e Ras activator Sos, leading to Ras-mediated proliferation.

which recruits caspases via its DED. Subsequent activation

nthetic SH2–DED adaptor can convert the normal proliferative

www.sciencedirect.com
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a higher degree of functional flexibility: the same com-

ponents can be scaffolded into several distinct complexes

and therefore can function in different pathways, either in

the same cell or in distinct cell types and developmental

stages. Furthermore, a scaffold-based platform might be

amenable to the evolution of new pathways, as interaction

domain recombination and mutation could yield novel

scaffolds that recruit novel combinations of components.

Rewiring cells with synthetic scaffolds and
adaptors: testing the power of assembly
Although scaffold and adaptor proteins are thought to

impose signaling specificity, it is difficult to evaluate their

role in the wiring of new pathways. Recently, several

studies have addressed this question by attempting to

rewire cellular pathways using synthetic scaffold proteins.

In one case, Park et al. [36��] examined the ability to

rewire yeast mitogen-activated protein kinase (MAPK)

pathways using synthetic scaffolds (Figure 4a). Yeast

mating and osmoresponse pathways both use scaffold

proteins to organize their three-kinase cascades. Strains

containing a mutant version of the mating scaffold (Ste5)

cannot recruit one pathway member and cannot mate.

However, pathway flux can be restored by re-recruiting

the missing component through heterologous recruitment

domains. Moreover, they showed that a synthetic ‘diver-

ter’ scaffold that assembled a hybrid combination of

kinases could rewire the cell: when stimulated by the

mating input (pheromone), the cell responded with the

output program normally observed upon osmostress.

Similarly, Harris et al. [37] found that co-localization by

covalent tethering imparts specificity to a kinase that can

normally function in multiple pathways.

In another example, Howard et al. [38��] showed that

synthetic adaptor proteins could be used to redirect

growth inputs into a cell death response (Figure 4b).

Normally, EGF signaling is propagated by receptor

autophosphorylation, followed by recruitment of the

SH2–SH3 adaptor Grb2, which in turn activates Ras

signaling by recruiting the Ras GEF Sos. Similarly, tumor

necrosis factor (TNF) signaling is propagated by adaptor

proteins that recruit caspases via death effector domains

(DEDs). Howard et al. showed that expression of a

synthetic adaptor composed of SH2 and DED domains

could convert a normally proliferative EGF signal into an

apoptotic response. Such rewiring could, in principle, be

used as a therapeutic strategy to selectively kill onco-

genically transformed cells.

Interestingly, some pathogens seem to have utilized non-

native recruitment to rewire host signaling. For example,

the Yersinia YopM protein appears to act as a synthetic

scaffold that directs RSK1 to phosphorylate PRK2, two

kinases that are normally not functionally linked [39].

The relevance of this rewiring event in virulence is
www.sciencedirect.com
unclear, but it illustrates the potential for pathogens to

exploit scaffolds to their advantage.

These studies highlight the functional modularity of

scaffolds that direct the connectivities of signaling pro-

teins. The power of simple co-localization in determining

cellular signaling linkages supports the idea that evolu-

tion could use similar mechanisms to create new path-

ways. Nonetheless, it is also clear from studies of natural

scaffolds that far more complex mechanisms of regulation

are often layered on top of simple co-localization to

achieve very precise and controlled signaling responses

[34,40�,41�,42�].

Conclusions
Over the past decade, a few simple design principles have

emerged concerning how cells guide and evolve specific

cellular circuits. Modular domains can often be used to

achieve diverse input/output functions, either through

allosteric gating or through component co-localization. A

major recent advance has been experimental confirmation

of the functional plasticity that results from such a mod-

ular framework: domain recombination has been used to

generate synthetic switches and scaffolds that can speci-

fically alter input/output relationships and generate novel

cell signaling behavior. This work supports long-standing

ideas about how signaling proteins work and sheds light

on how they may have evolved. Perhaps most exciting,

however, is that this work opens the door to the possibility

of rationally rewiring cell signaling circuits, much in the

way that one can readily rewire transcriptional circuits

[43,44]. The ability to create new signaling pathways and

circuits with precise connectivities and quantitative

input/output behaviors would be an invaluable tool in

trying to dissect the systems behavior of complex, higher

order circuits. Moreover, such tools might provide new

therapeutic strategies based on detecting, repairing or

rewiring intrinsic cellular defects.
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